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ABSTRACt _

Properties of linear passive media are investigated by using a phenome-

nologieal approach. Properties of fields that can propagate in a passive

medium are postulated and from this properties Of the constitutive relation-

ship are deduced. A necessary positive real condition on the constitutive

relationship is found and some of its implications are considered. Also, the

causality condition which is necessary for realizable media is considered.

Next a general formulation of the spectrum of characteristic waves in

lossless linear passive media is made. Because of an orthogonality condition

for the characteristic waves of the medium, the fields due to an arbitrary

source can be separated into components parallel to the characteristic waves.

The components of the source field are dependent only upon the portion of the

source parallel to their characteristic field and to their own sheet(s) of

the dispersion surface. The theory is then applied to two particular problems,

electric dipoles in a general time-dispersive uniaxial medium and in an iso-

tropic compressible plasma. Finally, the radiation field of an arbitrary source

in a lossless linear passive medium is investigated using the spectral decom-

position of the fields. By normalizing the length of the Total Poynting vector

(electromagnetic plus medium) to unity for each characteristic field, a concise

and physically interpretable expression for the source fields is obtained.

These results are then applied to an anisotropic compressible plasma and to a

magneto-ionic plasma.
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i. INT RODUCT I ON

One of the most simplifying and useful properties of Maxwell's equations

is the linearity property. However_ the linearity property in the past has not

been exploited to its fullest. Of course Maxwell's equations will not be linear

if the medium is not linear. Thus_ in all that follows a linear constitutive

relationship will be assumed.

To the author's knowledge_ the most general linear constitutive relation-

ship that Maxwell's equations will allow has never been used. There is_ however_

considerable motivation to formulate such a theory. In most cases the permit-

tivity_ £_ and the permeability, _ are considered to be scalar constants. This

was probably the original formulation of the constitutive relationship. Then "

these scalars were found to be functions of the applied frequency which gave rise

to time-dispersive media. From this_ it is found that the group velocity and

phase velocity are not necessarily equal but are in the same direction. In crys-

tal optics the permittivity constitutive relationship is given by a diagonal

matrix_ E_ while lhe permeability_ _ is still a scalar. Two such media that

occur in nature are uniaxial and biaxial crystals. More recently a considerable

amount of the literature has been devoted to magnetoplasmas which occur in the

ionosphere and can be created artificially in the laboratory. Magnetoplasmas

are characterized by a matrix permittivity and a scalar permeability. They may

also be space and time dispersive_ i.e. _ the permittivity matrix a function of

the Fourier wave vector_ _ and the Fourier time number_ w_ respectively. Also_

there exist materials such as ferrites that are characterized by a scalar per-

mittivity and a matrix permeability. Further_ uniformly moving media has an

even more complicated constitutive relationship. In a moving medium_ the

I



electric flux density_ D_ is linearly related to both the electric intensity_

E_ and the magnetic intensity_ H. A similar dependence results for the magne-

tic flux density_ B. These are a few examples of well-known media of nature;

however_ the possibility of creating artificial dielectrics gives impetus to

investigating the general properties of linear passive media. Moreover_ the

synthesis of media with given space and time-dispersive characteristics would

be highly desirable.

A large number of workers in the area of magnetoplasmas attempt to derive

a macroscopic constitutive relationship of the medium by formulating a micro-

scopic mc)del that is describable by dynamical equations and/or probability dis-

tributions. Thus_ they attempt to deduce the macroscopic properties of the

medium_ and hence the fields that can propagate in them from a postulated

microscopic model, This is not the only method of deducing properties of the

medium. Another very effective method is to postulate properties of fields

that can propagate in the medium and from this deduce the properties of the

constitutive relationship of the medium. This phenomonological approach will

be the method used to investigate the properties of passive media.

Since Maxwell's equations are linear_ the spectral theory and represen-

tation of the operators that compose Maxwell's equations for a lossless medium

will be use£ulo With this the spectral representation of both the source-free

and the source fields can be derived. In this way_ the specific role played

by the sheets of the dispersion surface and their associated characteristic

fields is easily seen. Also_ the manner in which the source excites the spec-

trum of characteristic fields to form the composite source field can be deter-

mined.
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In Section 4, by using the spectral representation, the exact expression

for the fields of a dipole in a general time-dispersive uniaxial medium will be

derived. These expressions are then compared with Clemmow's I fields in an

uniaxial medium, which he obtained by a scaling procedure. Section 6 is con-

cerned with the radiation field of an arbitrary antenna in a lossless medium.

The purpose of this thesis is to exploit the linearity of Maxwell's

equations and thereby derive general relationships for linear passive media

and for the fields that can propagate in such media. Further, the usefulness

of the general relationships are demonstrated by specific examples.



2. PROPERI[ES OF LINEAR PASSIVE MEDIA

2.1 Maxwell's Equations as Six-Vectors

Most commonly, Maxwell's equations in point form are expressed as two

separate vector equations, Ampere's Law and Faraday s Law. The vectors in-

volved have three components. However, this separation is by no means unique

nor necessary. With equal ease, one can express Maxwell's equations as six-

vector equations involving vectors with single components only.

Likewise Maxwell's equations may be expressed as a single vector equation

involving vectors with six components, This is the formulation that will be

introduced presently and will prove to be of an ideal form for many purposes,

particularly for conservation of electromagnetic energy. Defin_ the partial

"_ _W£ and _ as follows:differential operator _ and the six-vectors j ,

©
Cii _×

k

_2.1)

Y _ 16 , 7,¢
].

[9 9 '

(2.2)

(2.3)

(2.4)

The subscript _'f*' is meant to signify flux since the units of _f involves

"per square meter. '_ With these definitions, Maxwell's equations are simply

_)j " ,j _: ' _ (2.5)
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2.2 Definition of Constitutive Relationship

As easily seen, this vector equation has more unknowns than its order

and hence is indeterminate. The constitutive relationship yields the remaining

equations of the system. Essentially, the consitutive relationship is a

statement of the influence of the material medium on a wave propagating through

it as compared to the wave propagating through a vacuum. As such, the source

is not involved in the constitutive relationship. One would like to formulate

a mathematical expression for the constitutive relationship that would encompass

the general class of linear media. In the real space-time domain, say R, such

a constitutive relationship must be a matrix convolution operator, denoted _o.

Then the general linear constitutive relationship is

_f :=_'_ _ (2.6)

where the convolution is with respect to all four variables of space-time. It

can be verified that this expression is capable of accounting for the scalar,

uniaxial, biaxial, magneto-ionic, ferrite, and uniformly moving media that were

previously mentioned. Furthermore, the general linear constitutive relationship

applies to transient fields as well as steady-state fields whether sinusoidal

or otherwise.

In light of the complexity of the convolution linear operator, which in-

volves integrals of the "operand," _ , at times it is preferrable to deal with

the system of equations in Fourier transform space, _-. Throughout the fol-

lowing, the definition of the Fourier transform and its inverse transform will

be, respectively,

F(_,w):ffff6iI_'-'._'o_(-_.,_,)cl3rd, (2.7)
-CO



and

#¢fff J,_,,-,.,,5tiT, t) =12 e
-CXD

F (_,cO) d3kd aJ (2.8)

-- %where the transform variables are co and k. Let the Fourier transform of

_, J, and _ be, respectively, Ff, C, U, and O. Then in space _L. the

system of Maxwell's equations and the constitutive relationship are

OF :(.oFf+C (2.9)

and

Ff :=UF (2. lO)

6

What is gained by such a transformation is the following. The operators are

simply square matrices of order six with elements which are functions of the

transform variables _ and k. Also make the distinction between space-disper-

sive and time-dispersive media as Allis 2 does for magneto-ionic media; the

constitutive matrix U as a function of k and _ implies that the medium is space-

dispersive and time-dispersive, respectively. In truth the names space and

time-dispersive media are misnomers since dispersion is a property of the whole

system and its dependence cannot be separated among the space and time varia-

bles. A non-dispersive medium is one whose dispersion surface is hypercones

with their vertices passing through the origin in space _. Thus, it is pos-

sible for a space and/or time-dispersive media, as defined above, to be non-

dispersive.

2.3 Waves in Passive Medla

The general class of llnear medla is larger than necessary for most pur-

poses. In fact the homogeneous medla that commonly occur in distributed
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systems is passive. (A passive medium is defined to be a medium in which both

the electromagnetic energy density stored and the power density dissipated for

all fields are non-negative.) For this reason, in all that follows we will

restrict our attention to passive media. First, however, it is necessary to

recognize the properties of passive media in order that the two classes may be

separated.

For either passive or active media, the totality of fields (waves) that

can propagate through it uniquely characterizes the media. Even certain sub-

sets (complete sets-subsets of the propagating waves that span the totality of

fields for the medium) of the totality of fields may suffice to characterize

the media. An example of a complete subset is the set of plane waves. Even

so, all plane waves are not admissable in passive media. Thus, we would like

to determine the properties of the waves that can propagate through passive

media and from this determine certain characteristics of the constitutive rela-

tionship. Neither Maxwell's equations nor the constitutive relationship will

aid in determining the class of fields we seek. The remaining equation that is

essential to determining whether or not a wave is propagating in a passive or

active media is the conservation of energy. Multiplying Equation (2.5) on the

left by _ and transposing terms gives the equation of conservation of electro-

magnet ic energy

or

@T -'-#J_ :-\7_'e = a,*_

where the superscript T signifies the transpose.

(2. n)

(2.12)

Identification of the cor-

responding terms results in

I



; rate of change of electromagnetic energy density

supplied by the sources.

_.-fTo,7"=VT#_e ; divergence of the electromagnetic Poynting vector.

_+_de ; rate of change of stored electromagnetic energy

density plus the dissipated power density.

A further identification of the rate of change of stored electromagnetic energy

density and the dissipated power density can be made provided the operator _]_

is split into the sum of two operators. In the transform space, _ , it can be

shown that the rate of change of stored energy is associated with the Hermit]an

part of the operator U, while the dissipated power density is associated with

the skew-Itermitian part. Thus, it is only necessary to transform the Hermitian

and skew-Hermitian operators back to the space-time domain, R, in order to ob-

tain the separation there, i.e.,

= :T = (r,_ *___ (-7,-t) (2._3)

and

= )-- _ ,t ,_T(-,,= -r,-f (2.14)

lhen we have

and

_e
(2.15)

XT/_*
: _Pde (2.16)
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Now the separation into passive or active media can be made by determining

whether or not both the stored and dissipated electromagnetic energy densities

of all possible fields in the media are non-negative. This will be an essen-

tial factor in proving a necessary condition "positive real" theorem for the

constitutive relationship of passive media that will be considered later.

At this point let us determine a property that all plane waves in a Past

sire medium must obey. For a source-free passive medium, the net energy flow

into a closed region must be non-negative. Since the closed region is arbi-

trary, this implies that the integral with respect to time of minus the diver-

gence of the Poynting vector for any field is non-negative, i.e.,

-f'V_d,_>O.

ALso, since the field is arbitrary, the condition should apply to a plane wave

oi the type

J= 2 Re_ (2.17)

where

_,=_o,,Cs°'-_°"-_ (2.18)

_o is an arbitrary complex vector field which is independent of space and time,

--b --_ -4P

So --o'o+]_o, and )'o- Clo*Jko

But

_,_-2 R_Oo_ (2.2o)

I



where

(2.21)

Therefore

or

-vT_= 2Re [3_o0o 3_oe z c_c,a-o,-'o°TI 3eoTo eZC_o,--Y_,'T)]+ 0,_o

10

(2.22)

Let Do > 0 and time, t, be much larger than any characteristic time of the

system; then the above inequality is approximately given by,

dl _ e2((r°t-_o.i-)
.- -SoJ; Ocg_oe2i(%'- k-'° -_)

(2.23)

2(O'ot-E,_._)
Since e > 0

then

I I T /-j ,- a
Re _ od_ ' _o '--_o0:_'4c(: __>0

(2.24)

(2.25)

The second term of Equation (2.25) may take both positive and negative values;
i

therefore, the first term must be non-negative_ in other words,

V00o o]0

But R? r, =4 where Pe =_Re EeX ,_ is the real part of the
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complex Poynting vector. Now we have the desired result that for Re s > 0
O --

-T --
then a P > O. The result is as intuitively as one might expect; in a pas-

o e

sive source-free medium the fields decrease in the direction of the average

power flow.

In addition, since the conservation of total energy is also applicable,

one has

a_ 7- oq/_. T

--Oq-f---4- _:::_dT + _:'7"Cq-bT = at (2.27)

Therefore, the difference between conservation of total energy and the conser-

vation of electromagnetic energy ls also a conservation law. That ls,

_m _m
+ V T6D_- (,-,2s)o_t + _dm at

where

'_/-/',,7-. : _J'T -- "Z_e (2.29)

pdm : _:_dT - Pde (2.30)

(_Dm = 6DT -- 6De (2.31)

and

_m : _T -- _-e (2.32)

The subscript m is to denote medium energy density, medium power flux, and so

forth.

Naturally all of the conservation laws may be expressed In transform space,

; however, it is sufficient to only deal with the transform of the conservation

I
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of electromagnetic energy. Then

_..h _

sh/_e + _Ode - 7 L_ e : S/JL e (2.33)

where the tilde indicates the transform of the quantity.

2.4

with

Lossless Property of Media

Consider a harmonic electromagnetic field of the form

(2.34)

: Re jouU(k,cU)Yoe (2.35)

7T_By averaging the quantity with respect to time and equating this steady

change in energy to zero, we can arrive at the condition for lossless media.

The terms involving e ±j_t will have a zero average, leaving

(2.36)

or

(2.37)

But JO is arbitrary and hence the constitutive matrix is Hermitian for real

--b

¢0 and k, i.e.,

3
2.5 "Energy" Condition and Group Velocity

(2.38)
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IConsider a lossless medium. Hence, for real ¢0 and k we have,
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and

U(k , (.LI) " U 1- (,k, W) (2.39)

oct)= - o*l_) (2.40)

Iherefore, the matrix operator _(_,_) defined as,

Z//(F,oa)=0 (_) -j oou (-_,_) (2.41)

is skew=Hermitian. A source-free solution to Maxwell's equations, F, in space

exists when

//_, oo) F(_,oa) =0 (2.42)

0 F

(/7_F)t- Ft_ t = - Ft_ = 0 i2.43)

Allow small perturbations to occur in _,_ and the medium such that

and

COl - (_) +_OJ (2.44)

k= = k + 8k (2,45)

Then a new field solution Fl(kl,_0 I) may be obtained for the perturbed system

such that _

"_, (k, ,(d, IF, (-k, ,W, ) = 0 (2.46)
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1 is not required to be skew-Hermitian. Because the perturbations are small,

however, we can write

(2.47)

where _(k O3) represents any perturbation of the medium not due to a change

in co or k. Therefore, by using Equations (2.46) and (2.47) one obtains

(2.48)

However, from Equation (2.43) it is seen that

Ft_FI-0 (2*49)

and hence

(2.50)

Since all of the terms in the brackets are small

F may be neglected, yielding,

, the difference between F 1 and

(2.51)

Now let us consider each term of Equation (2.51).

F t @ __FVZ((zU)F-__}4aw _F= _ aw = (2.52)

W is a generalization of what is commonly called the average electromagnetic

energy density due to a harmonic field. This is discussed further in Section
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2.9.

where

From the second term we have

(2o 53)

(2.54)

and

= electromagnetic Poynting vector for a harmonic field

= medium Poynting vector for a harmonic field.

]'he third term reduces to

(2.55)

(2.56)

Putting the component terms back into Equation (2.51) gives_

(2.57)

Nov for an unperturbed medium _ _ : O,

given by,

and we see that the group velocity is

(2o 58)

Also when _LO : 0 j i.e., when the refractive index surface is given for a

fixed frequency, the group velocity and the total power flux vector PT = P ÷P
e m

are normal to the dispersion surface° It should be emphasized that the only

stipulation made upon the medium is that it be lossless.

I
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2.6 Onsager's Property

For the sake of completeness let us mention Onsager's principle as applied

to the constitutive relationship. If the sixth-order matrix W is

(2.59)

the Onsager's property can be expressed as

U (k,ua, H o ): W U(k,cu,-Ho)W (2.60)

4
For a description of the details refer to Onsager,

7
De Groot.

5 6
Meixner, Casimir, or

2.7 Real Property of Media

Since both the field strength J and the flux field _f are real valued

vector fields, the definition of the transform and Equation (2.6) implies that

there exists a real property of the medium, namely,

($,Y):_(S*,y _) (2.61)

where the star, ,, indicates the complex conjugate, and s = ff + j_ and

More explicitly, J and _f real implies that

F*( s ,z) : F( s_, z*) (2.62)

and

F_(s,y): Ff(s*,Y*) (2.63)

I

I
I
I

i

I

I
I
I

I
I

I
I

I
I

I
i
I



I

I

I

I
+

I

I

I

I

I

I

I

I

I

I

I

I

I

I

17

respectively. But the constitutive relationship implies

Ff(s,Y)=U(s,Z)F(s,Z) (2.64)

The re fore •

f "+ U'*(S, ""F (s,r) =_ _)F* (s,r) (2.65)

and

Ff (S*,X*) =U (S*,Z*)F*(s,7) (2.66)

Subtracting Equation (2.66) from (2.65) and using Equations (2.62) and (2.63)

results in

O: U_ts * *.,)_)-U(s ,Y )J F _r (S,'_) (2.67)

The vector F_(S,_ ) is arbitrary, however. Therefore,

u*ts,;) =uts'.;") (2.6,)

An immediate consequence is that if the constitutive matrix U is independent

of both s and _• then it is a real matrix. This property does not seem to

have been fully exploited in the literature.

2.8 Positive Real Property

It is quite Well known that the necessary and sufficient conditions for a

function to be the driving point impedance of a linear passive network is that

the function be a positive real function as originally defined by Brune 8 in

1931. At that time Foster had already presented a method for synthesizing
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certain types of one port networks° This greatly reduced the difficulty of

the sufficiency proof. The significance, however, of Brune's positive real

theorem was that it established a logical foundation for snd an impetus to the

development of network synthesis. Also, it has been established that the

impedance and admittance matrices of passive networks are positive real

matrices. With this as a background, it would be desirable to establish

similar necessary and sufficient conditions on the constitutive matrix or

perhaps some function of the constitutive matrix for passive media. The de-

gree of difficulty of such a proof over that of Brune's for networks will be

enhanced for at least two reasons: (i) Very little is known about synthesis

of media, particularly the synthesis of dispersive properties; (2) The proof

will include the wave vector k as a parameter and thus will require extra con-

sideration and conditions upon it. Heuristically, one might expect that in

the limit as the wave vector k approaches zero or as the wavelength approaches

infinity a correspondence exists between the properties for passive media and

passive networks.

Let us now establish the necessary _positive real _ property of passive

media as a theorem.

Theorem 2.1: The function of the constitutive matrix Z(s,_) = sU(s,_) is a

"positive real" matrix for a linear passive mediumjwhere s = U + j_ and _ = j_

are the complex transform time number and space vector, respectively; i.e.,

(1) Z_(s,y):Z(s_ y*)

(2) Res_O implies Re_tZ_O, VJ

Note that the restriction of _ = jk where k is real is necessary for the convo-

lution operation in space-time which gives _f=_o_ to exist.
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Proof: Part (1) follows immediately from Section 2.7 and the definition

Z(s, _). That is,

Z (s,Y)=s U (s,Y)=s U(s :7 )=Z(s ,7 )

Recall that

a_
_I +_ de= ,-_T_f

(2.69)

Both_/e(t) and_Ode(t) Rrpcpositive definite or semidefinite for fields in

passive media; therefore,

t t

_/e (') +/_ de dt = t_o_T_fd, + _fe (_) _ 0to (2.70)

This is true for any field; thus_ it should apply to any particular field.

= _ (snt-_r)
a particular fleld be _= 2Re_ I where _1 ,.To e - - and

complex field vector independent of space and time.

Let

TO is a

The flux field is then

Or

_f = __ * _ (2.7l)

Now

Ff = UF (2.72)

(2.73)

and

Therefore,

e(Sot-7 o r )"_f : U (So' YO ) "_0

"X- "b -X.

*-"* -- (So'-7o
" __U(So,_'o)_oe (2._,s)
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However, because of the real property, _U_(So,_0*): _U___(S0,Y0)

field and its time derivative then becomes, respectively,

the flux

(2.76)

and

''] (2.77)

Now it

or

is easily shown that

-TTJf - 2 Re [J,*Z (So,_} _, + J:Z(So _o }_,]
(2.78)

Using the expression given in Equation (2.79)

(2.70) and integrating results in,

e 'r,_ o (2.79)

as the integrand of Equation

4-

,yoJ_oe yo_ZC_o,%)yo__o'-z°''%-o

I ? --- 2_ot o I T 2Is t --"_7'r-P) (2.80)

+_e(to) >0

For 0 ° > 0 and for t large enough, the values at to, i.e., exp (20ot o) and

exp (2 Soto) , are small compared to those at t. Also the electromagnetic

energy density at to, _e(to), is small. Then

Q
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I
I
I

I
I

I

I
I
l
I

l

I
I
I

I,

I

eW ' _Z(_o.__i(_o'-r_;"]->0R.[_-_':Z(_._+_
and

_o[_ * - , _,:Z(_o_.,o_,,_o,-_'o_]_>o

Since the second term of Equation (2.82) takes both positive and negatJve

valt:cs, Lhe f_rst term must be non-negative, i.e.,

Re SolO implies Re[_:Z(So,_)a_o] _O, V.._o

(2.81)

(2.82)

(2.83)

Therefore, as was to be proven, the matrix Z(s,_ = s U(s "_ ....,Y) is a positive

real" matrix,

In practice it Js difficult to prove or disprove that a medium satisfies

the positive real condition from the definition alone. For this reason l.t

us prove a lemma that will facilitate this work

Lemma 2.1: Let Q(A) = Xf J% X and Q(%) = X "_ A D X where X is an arbitrary

vector, and A D is the diagonalized matrix of A Then Re s _> 0 implies

Re Qf=A) > O, vX if and only il Re s > 0 implies Re Q(A D) _> O, VX.

Proof: Let T be a matrix whose columns are eigenvectors of A. Also, let T

be normalized such that TtT = I. Then when the vector Y of the transforn, a-

tion X = TY takes all possible values, X takes all possible values and vice

versa. But

X'_AX=(TY)÷A(TY)= y÷(TfAT) y= Y÷At)Y VX,Y (2.84)

I
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Therefore,

Res_>O=_ReQ(A)->O, VX ,f and only ,f Res_>O==PReO(Ao)_>O ,vY (2.85)

Thus, to prove the positive part of the _positive real _ theorem, it is

sufficient to show that for Re s > 0 the real parts of the eigenvalues of

Z(s,k) are greater than or equal to zero_

9
2.9 Implications of the Positive Real Property

Several implications are a direct result of the positive real property_

For instance, it is possible to derive a result analogous to Foster's reactance

theorem. Before doing so, however, let us consider the average electric energy

density in a lossless medium, It is qulte commonly stated that the average

electric energy density of a harmonic field at frequency _ is

('z2)E+ a(_,a_,f') E (Zos6)

This equation is only an approximation, whioh to be sure is a better approxi-

mation than (I/2)E tE E_ But the energy density is dependent upon the entire
=

history of the fields in the medlum _herefore, one would expect that the

energy density at frequency _ be a function of all of the derivatives with

respect to w, depending on the manner the amplitude rises from zero° It is not

even intuitively obvious why the approximation given by Equation (2.86) should

be a positive number_ The following theorem will prove it to be the case for

lossless passive medium_

Theorem 2.2: For a lossless passive medium,

+JL _0F aw (w_J (w,--C))F YF (2 8v)
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Proof: Let Q(s,_) be defined by QCs_) = F ZCs,k-_ F. For s = j_0, QCs_)

is imaginary since U(co,k) is Hermitian. Expand Q(s,k) in a Taylor series

about a point s = j_ and evaluate it at the point in the right half plane

S ---_ S •
0

0(_o_,-0_i_,_,=_ _no(s i) I (SO-iW)n
_9sn s=iw

(2.88)

As s approaches j_, the first term of the series will be the predominant
O

term. Define the following terms,

C/:or So,k) , (2.89)

(_.90)

! ]Z=org _)s s:iw
(2.91)

Therefore_ in the limit Equation (2.88) requires,

(2.92)

The "positive real" condition requires that 14 -<_/__o,I_1-<_P,
Therefore, for Equation (2.92) to be satisfied, _ must be zero. Hence,

@Qls,"_) >0
a s s:iw-

(2.93)

or

(2.94)

I
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But since F is arbitrary, we have the final result

VF (2.95)

Now it is a trivial matter to see that Equation (2.86) is a special case of

Theorem 2.2.

A few important residue conditions that are a result of the "positive

real" condition are as follows:

Theorem 2.3: (i) There are no poles of F t Z(s,k) F in the half plane _e s > 0.

(2) The poles of F_Z(s 7) F on the jc0 axis are simple and the

residues are positive real.

Proof: Assume that there is a pole of order n at s = So, Re So > 0. The

Laurent expansion of Q(s) = F _ Z(s_) F in the neighborhood of the pole s
0

of the form

is

co

Q (s) =Z ai(s-so)
I-'-13

(2.96)

If s is sufficiently close to s the term corresponding to i = - n is predomi-
O'

nate. Then

O-hi [ ) - 13<lrq(_ - 5,.)] (2.97)Re QIs)_ I_-sJ'_ cosor(,(_:L,_' ,.

Since arg (a ) is independent of s and arg (s - s ) ranges from 0 to 2_ for
-n O

Re s > 0, then the dominant part of the Laurent expansion changes sign 2n times

in the neighborhood of s . Therefore, there exists and s such that Re s > 0
O

and Re Q(s) < 0. But this contradicts the "positive real" theorem and thus

there oan be no poles of F _ Z(s,k-*) F in the half plane Re s > 0. If s = J_o'
O
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then the dominant part of the Laurent expansion satisfies the "positive real"

theorem when arg (a ) = 0 and n = i. Therefore, the poles of F + Z(s,k-_) F on
-n

the j_o axis are simple and the residues are positive real.

Another theorem follows from Part (2) of Theorem 2.3.

\

Theorem 2.4: The matrix of residues of Z(s i) at any poles on the j_0 -axis must

be positive definite or positive semidefinite.

Proof: Let the vector F be real and s = j_00 be an arbitrary pole of FT Z(s,k) F

on the j_o -axis. From Part (2) of the previous theorem, such a pole must be

simple and the residue of F _ Z(s,k) F be positive real. Therefore,

Residue [FTZ(s,k)F] = _im (s-Jo00)FTz(s,-_)F_>O Vre01F
s-_-jw o

= FT[_im(s-j_O )Z(s?_)] F _>0 V realF
--_ t. S "-'_'i WO 0 --_

But lim (s-J_0o)Z(s,k) is the matrix of residues of Z(s,k) at s = j_00.

s -e_j_00

fore, the theorem is complete.

(2.98)

There-

One other condition upon the constitutive relationship, which is implied

by the "positive real" theorem, is the following:

Theorem 2.5: The matrix of the real part of Z(s,k) must be positive definite

or semidefinite for Re s > 0.
m

Proof: Since Re Z(s,k) F] _> 0 VF for Re s > O, it will certainly be

valid for F real. But for real F, the Re operator commutes with F,

(2.99)

I



Therefore,

Re s>_O implies F T eZ(s,k) F>_O (2.100)

and the theorem is complete.

Let us verify that the cold magneto-ionic medium satisfies the "positive

real" conditions. For such a medium the constitutive relationship may be

given by a matrix of the form

26

where

and

F_t E#01

=E: [-E//E/O/

Loo_J

(1/ -t-(.J.)N+CL) H ) $_'-_o/_)(?+2"_+ _ _ _ +''<<,"_)
s2+2vs+(z/2+wH2)

(2,101)

(2. 102 )

2 2

E//: (%/s)( tO.CON
,z+zl,,+cl,,2+oj.2))

(2 103)

_oc_/,)( ,2+_,_+_,+_,)

(2.104)

_2. 105)

Since all of the parameters of Z(s) are real_ it is readily apparent that the

!
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x

real condition is satisfied, i.eo, Z(s) = Z (s). the six eigenvalues of

Z(s) = s U(s) are,

EoW_
J

)'..z " EoS+ s+(u_+iw.)
(2.106)

(2° 107)

_4,5,6 =/-LOS

I
while the real parts of the eigenvalues are

I EoW_(or+z,)

Re [)`,,2] =EoO'+ (O-+Z/)2+(Cj+_H)2I

(2. 108)

_)0' 0-_---0 ('2.109)

I

I

I

[ _] _o_._oRe k =%0"+ O.Ztoj 2 >0,

Re[_.4,5,6 ] =/.L 0->0 , 0"_>0

0-_0 (2_110)

(2. iii)

I

I

Therefore, the cold magneto-ionic medium satisfies the positive real condition.

210 Causality Property

the energy condition is not sufficient for a constitutive matrix to repre-

I

I
I

sent a realizable passive medium, Even though there exists a causality condition

for circuits_ it does not play as important a role as the causality condition

does for distributed systems, the reason being that the velocity of propagation

is assumed to be infinite in circuits° In distributed systems in which

I
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characteristic lengths may be large compared to a wavelength_ causality implies

that the wave front can travel no faster than the velocity of light in a vacuum.

Hence_ causality for distributed systems should be stronger than causality

for circuits. And one might even expect that if the velocity of light in a

vacuum were mathematically forced to approach infinity the causality condition

for distributed systems would approach the causality condition for circuits.

Thus_ the problem is to use the causality condition to derive extra necessary

conditions upon the constitutive matrix for realizable passive media.

Consider an infinite homogeneous passive medium in which a Dirac delta

electric or magnetic current source both in space and time is placed at the

origin Of,a coordinate system. Then causality states that for the field_ (_t)_

r
_,t) = 0 f0( |-_-<0 (2.112)

where c is the velocity of light in a vacuum° J(_t) may be represented as

a Laplace transform in time

(2.113)

where @ is a finite constant for which F(_)s) has no singularities in the half
O

plane Re s > @ > 0. Evaluate Equation (2 113) for t - r/c < 0 by closing the

coptour in the right half plane. Then we have

where CR is a semicircular path in the clockwise direction of radius R.

(2.114)

Assume

I
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that the integrand satisfies Jordan's le_ma, i e,

M{'F)
IF(-_,s)e_ I-< islk when Isl>R o for Res>fY o (2_:,115)

where K is a positive constant and M(r) is some vector independent of so Then

I [ -_ 'F(r-'_s) < M(r) eERe s
- Islk (2o116)

when Isl > R , Re s > a for all_ Therefore, we expe2t that for any reali-
0 _ O' _ -

zable medium the Laplace time transform of the field due to a Green's (Dirac

delta) source should obey this necessary 2ondition Note that it is easy to

verify that a vacuum medium satisfies thls zondition,,

Since it is difficult to find a more explicit condition upon the _onsti=

tutive relationship for an arbitrary medium_, assume that the medium ls isotropic0

Also assume that the elements of the constitutive matrix are ra_ios of two

polynomials in the variables s_ and k_ Let,

del (O-s_.U) = D(s ,k ) <2_ 117>

det U = (S,k,/[._(_;,_) -. (2 118_

O(s ,k)
(2 : 119)

where Dl(S,k) and D2(s,k ) are polynomials in the variables Now we have,

(O_S Uj'I= D2 (s,k) N(S,"_)
Da(s,k) O(s,k)

(2 120)
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with the elements of D2(s,k) N(s,k) as polynomials in the variables. Therefore,

the field due to an arbitrary Green's source _ (_t) = C 6(-_) 6(t) is

3/;/ D_(s,k)NJs_)C _i;'.;d3kF(W,s) : (277")- D2(s,k)D(s,k )
-GO

(2o121)

J f_)J D2(s,k)lD(s,k)

since the elements of D2(s,k) _(s,k) are polynomials. By integrating in polar

coordinates over she two angles one obtains,

Fir,s) : j(2"/T) -2 D2(s,jV)N(S, ] _D-"_,_---_Is,k)
(2, 122)

And finally a contour integration yields_

F(-_,s)= D2(s,jV)N(s, j9 C esidue D2(s,k)D(s,k ) 2TTr
(2° 123)

where k (s) is a root of D2(s,k) D(s,k) = 0 that satisfies the radiation condi-n

tion lherefore, by comparing Equations (2.116) and (2.123) we find that for an

isotropic medium_

Re[jkn(s)] >_ (_lRe s, IsI>R o , ReS >_ Cro , _'n
(2. 124)

where k (s) is a root of the determinantal equation
n

I
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de I [0 (-_') - sU(s_ )] : C) (2 125_

that satisfies the radiation condition.

Now consider the special case of an isotropic medium in which both the

permittivity and permeability are scalar functions of s only and of the form o_

the ratio of two polynomials° Then the causality condition implies,

Re jkn(S :Re S(/L/.(s)6(s)) 2 >clRes, Isl>Ro, Re s>CT o ,2.1;_6:

But, for both the permittivity and permeability, the positive real conditi(,r.

requires that the degree of the numerator minus the degree of the denominatc_

polynomials is either, O, -1, or -20 Therefore, for both the positive real

condition and causality to be satisfied, the degree of the numerator equa]_ the

degree of the denominator for both p(s) and £(s)o

2011 Example of a Bandpass Waveguide

Finally, let us give an example of a medium that, if realized, can b<

advantagenously used to produce a bandpass waveguide. Consider a lossie_s

medium whose permittivity and permeability are,

• E(w):K w_-w2 , P- :H'o (2 _27_
CO 2 0.) 2 _ .

I

Then s £(s) satisfies the positive real condition if and only if _i is less

than or equal to w2" But

2ira (/L/.o_lS) /2"(/.LoK_/2_> C (2 ]28:_
S--_)
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implies that K > £ Suppose K =: 6
-- O O

It is obvious that the permeability

satisfies the necessary conditlons Now the medium inherently has a stop band

between col and co2 _ Fill a uniform waveguide with this medium0 For a uniform

l

.I

!

where co is the guide cutoff for a particular mode when the waveguide is
gc

filled with a vacuum° Then propagation exists for _ imaginary, or for frequen-

ties co such that

2 -2 2
CO-/_o6(u))- c Wg c >0 (2° 130)

2, 2 2, , L_.-I 2

or (.;kW2-03)((Xgl--(D',_tOg c > 0 Figure 2:i gives the regions of propagation.

And the cutoff frequencies for the waveguide modes are

2 2 2

+ ((wz+_gc)
-- 4

I

2 2 ±]2_ tdgcO.) I )2 (2° 131)

Also observe that _ col and _ _ are cluster points for the cutoff frequencies°

i

I

I
I

waveguide the propagation constant _ is I
I

- '%J o _ (_0
?: C (/.)9C ,, (2o129)
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Figure 2.1. Cutoff frequencies and regions of propagation

for modes in a uniform bandpass waveguide.
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3. GENERAL FORMULAIION OF THE SPECIRU_ OF CHARACTERISTIC WAVES

3+1 Field of an Arbitrary Source in a General Anisotropic (_) Lossless

Medium as a Spectrum of Characteristic Waves

Let us consider the probiem in which the medium in Fourier transform space

is described by matrix permittivity_ ,_£(_)_ and permeability_ _(_)_ even

though no known natural media has such a constitutive relationshipo Also assume

that the elements of the matrices are arbitrary functions of _ and ko With this

formulation Maxwell's equations dispiay a great deal of symmetry° And the

sy_Letry is capable of revealing much as far as the form of the expected results

are concerned+

The Fourier transformed _axwell's equations are

-9 •

-- Z -- " [_ "--

-_ +, = /.c.(_ Cd) + ,7e (k ,CO)-jkx_-,?:tk oJi: #_e:o' '- +

(3+ i)

, , and m , _ ,,where ,'i _ K_ + -_; -- _o .... , .... Eliminating E in Equation (3+i)

gives the equation for H_

: +_ i_Eo I_m(k + Oa_ (3.2)

where

I -]Mm(_" oj!: Jm(_+_;_ - /icuE o) -..j_xl.<t.Te (k,OJ) (3°3)

]'hen :Equation (3,2) may be rewritten as,

G H (_, OJ) H'[_, OJ) : -jCdE o Mm(_ , Q.)) (3_ 4)
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in terms of the matrix operator, GH(k,_),

GH(k,OJ) = (-kxK-I_X-ko N) (3.5)

The source-free solutions may be found from Equations (3.4) and (3.5) with

the source term equal to zero. Alternately, one can find the eigenvalues and

eigenvectors 10 that correspond to the problem

--kxK-I_xHi :k i NH i (i = 1,2,3) (3.6)

and then equate the eigenvalue k to k2. This means that the source-free equa-
l O

tions will be satisfied for the propagation vector, _, on certain surfaces in

Fourier space. These surfaces are prescribed by the equation det [GH(k,_) ] = 0.

In terms of the eigenvalues of Equation (3.6) the det [GH(k,_) ] is

(det N)(kl-k2o ) (k2-k2o) (k3-k 2) or (det N)S1S2S 3.

(k.-k 2) = S. = 0 is a portion of the dispersion surface. For a cold plasma
1 O 1

(N = I, K ¢ K(k)), S i = 0 is one sheet of the dispersion surface; however, for

a warm plasma, (N = I, K = K(_)), S. = 0 (i = 1,2) may be more than one sheet.
1

Assuming that the medium is lossless, i.e., K = Kt, N = Nt there exist

certain orthogonality relationships between the eigenvectors H.. First, l_owever,1

it is necessary to show that the eigenvalues k i are real. Define A as

A = - k x K-1 _x.

= NH. (i = 1,2,3) areLemma 3.1: The eigenvalues of the matrix equation AH i ki i

re al.
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Proof AH = X i NH i

Hjt AH = X i H:,tNHi

. _tNf HiH i AtHi : Xi H

Hi_AH_:_HTNH,
('.'A end N ore Hermitien f(_r reel k and OJ)

Eut HirAH : x. _TNH i

Therefore,

Hence,

or

) Xi : X_

"'NH i : 02) H,

Theorem 3, i: The eigenvectors of the matrix equation AH i = kiNH i (i = 1,2,3)

satisfy the orthogonality condition H_NHo = 0 for ki_ kj0 1

Proof :

But

AHj -- XjNHj

H[TAH j >,j HitN Hj

HjtAHi : Xj HitN H;

(v A_N ore Hermifien end Xj is reel)
+

Hj'AH i = X iHjtNH i

Therefore, (X_ -Xj )Hi'NH; -_0

Hence, H_NH i : 0 for X i :/: Xj

N-1We observe that for lossless media, since the operator -_ x K-it x is the

adjoint of _N_I_ x K-l_x, then the set of eigenvectors, Bi, are the reciprocal

basis II to the set of eigenvectors, Hi.
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One of the eigenvalues, say k3, is zero. This fact immediately follows

from the relationship

det (-N-I'_xK-Ikx) = XlX2X 3 (3.7)

since the determinant of a product is equal to the product of the determinants

of two matrices and since det (kx) = O. The eigenvector, H3, corresponding to

the eigenvalue k 3 = 0 then may be chosen as H3 = k. From this it is evident

that H3 is longitudinal and that E 3 corresponding to H3 is zero.

Choose the components of the eigenvectors, H. and B. to be polynomials in
1 1

the transform variables _, _, _, _ with no common factors. This is always pos-

sible when the elements of K and N are the ratios of rational polynomials of

Then the identity matrix, I, in terms of the eigen-the wavevector k and _.

vectors is

3

)-t ,z: _ (H_nH_ nH_H_
i:l

(3.8)

3

+ }--IH "tT- E (Hi NHi iHi N

i:l

(3.9)

The operator of Equation (3.8) operating on a vector splits the vector into its

components that are parallel to B i. Similarly, the operator of Equation (3.9)

splits the vector into its components parallel to H i, Equation (3.8) will be

used in the interpretation of the field due to an arbitrary source°

GH(_,_) and its inverse _1(_,_) can be expressed in terms of theBoth

eigenvalues and eigenvectors of Equation (3.6).

I
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5
-* t I

GH(k,cu): _ S_(H_ NH_ f NH_HT (3.10)

5

t ; HTGH(-_,CU ) = £ Si (H i NH i H i

i:l

(3.11)

(3.11) is correct

Then

-p

To verify that the expression for the inverse of GH(k,0_) given in Equation

multiply GH(_,c0)GHI(_,c0) on the right by the vector NH, j"

5

-I -I }-I t
GHG H NHj : Gtt £ Si(H T NH i _ H i H i NHj

i"l

: S] I GHH j

: S]'S] N Hj ('-" GH Hj = S; Ntdj )

: NH_
J

Since any vector may be represented in terms of the three eigenvectors,

H.(i = 1,2,3), Equation (3.11) is true in general° The solution for the
1

magnetic intensity, H(r_¢o), for the arbitrary source is obtained by the

inverse Fourier transform of H(_,_) deduced from Equations (3.4) and (3.11).

cO

ff; :5 -I H_NH t Hi ,G)#e clH(r_uJ! : jO.)Eo(2T/') -3 E Si( )-' HTMm(-_ ' -J_"_"3k

i:l
oo

(3. i2)

Multiplying Equation (3012) by _ inside the integral sign gives the expression
I

for the magnetic flux density, B(_,_).

cO

3 -I °B(T, OJ)=-jW/.L o_o(2Tr) -3 Z Si(H:NHi F'NHiHtMm(;, _)ej_:Td3k (3.13)
i:l

-o0

I

I
I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
i i



Recall that Equation (3.8) operating on a vector, Mm(k,_) , splits the vector

into its components that are parallel to the magnetic flux density, Bi, that
5

corresponds to the eigenvector, H i. Therefore, Mm(k,00) = _ Mini (k,CO}I
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I
where Mini(k,(4)) = (H_NH i )-' NH i HTMm(k,C_)

I
I Similarly e(_'OJ) = Zi=, Bit_'GO)

where B i (k,(_)) = (H i NH i NH i H i B(k,W)

Using these facts result in

' IfI B(;',w) = -jw _o _o (2"n)-3
i=l

-oOI

I
I
I

I

Mmi(k,CO) e ' dSk (3.14)

, !Because o£ the orthogonality condition, Hj NH i = 0 (H B i = O) _i _j , the

component of B(_,w) parallel to B is entirely due to the component of Mm(k,_)
l

parallel to Bi, i.e.,

B i (k,Cd) =-jQJ/J.oEoSi Mmi(k,QJ) (3.15)

-1
Denote the inverse Fourier transform of S.

1
and (H_ NHi )-I by Qi and Gi, res-

pectively. Then

Bi(_,CO) =-jCU/ZoEoQ i * Mmi(T, LO) (3.16)

and

I B('F,LO}= -jC0/z OE O_ O i * Mmi('_',CO)

i i= I

(3.17)



4O

Mml.(r,(o), the inverse transform of m --Mi(k'_) is

Mini r,OJ) =/_o G * B i (jV, OJ)_ * H_t(jv, OJ)_ * Mm(T, oJ) (3.18)

=/_ G * B i (j_,OJ)H_t(jV, CU)Mm(r,OJ) (3.19)

The prime symbol is used to emphasize that the quantities are eigenvectors,

not components of source fields. The reason for the choice of the normaliza-

tion for H. and B. now becomes apparent in that the inverse transform of H_(_,(0)
i i i

and B'.z(_,_) are H;(jV,_) and B_I(JV,_), respectively. Also, because of the

isomorphism between polynomials in Fourier space and partial differential opera-

tors operating on the Dirac delta function 8, an orthogonality condition equiva-

lent to H_NH i : 0_ h i_ _j , exists in x,y,z space, i.e.,

HIt(jV_CO)8 * BF(jV, CO)S :0 for k i _ Xj (3.20)

or

.]*(IV,_)B[ (jV,_)s :o (3.21)

If in Equation (3.1) H was eliminated instead of E, analogous results would

occur. However, invoking duality produces the same results in a more enlighten-

ing manner. Duality implies that one can replace the quantity (1) by the quan-

tity (II) in the previous formulation to give the desired results.

I
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o

i (I) (ii)

E H

I tt -E

de Jm

I Jm -Je (3.22)
_o £o

I Eo _oN K

K N

I
Using duality, with the dual operator_ , Equations (3.2) through (3.5) result

I in,

I ___ _i__ _ -_(-kxN kX-koK)F'(k,OJ) =-jOJ/zoMe(k,CO) (3.23)

i . [_] . _,.
I _ _
I GE(k,CO)E(I_,O3) = -j(.O.U.oM e (k,OJ) (3.25)

GE(k,CO)=._ GH(k,OO) =-k N kX-koK (3 26)

I Since the operators det and _ commute , det [%(k,c0)] is easily seen to be

i ships between the eigenvalues and eigenvectors, that are necessary in order to

continue the discussion of theelectric field using the duality principle.



Lemma 3.2:

Proof :

equat ion

The dual of eigenvalue ).[ iS Xj ,i,j=l,2,i_j, if

42

Assume that an eigenvalue, kl, and its elgenvector, Hi, satisfy the
I
I

I
4D

GH (k,td, X i) H i = 0 (3.27)

The dual of Equation (3.27) is

-D

Therefore,_ [ki] is an eigenvalue of GE(k,w,k)E = 0 with_ [Hi] as it_ c_6_= °,*

vector. Since

[ ] [ ](det N)det GE(k,(.L),X) =((Jet K)det GH(k,Ed,X) = 0 (3.29)

[ki] is also an eigenvalue of GH(_,_,k)H : 0. Now_ [ki] _ 0 since it is

assumed that k.l _ 0. Therefore, either2[ki] = kj, 3 = 1,2. But, since

_ [Xi] _ ki, _[ki] = kj; i,j : 1,2, i _ J. Note that if _[ki] = k i for

either i equal to one or two, then the other nonzero eigenvalue must also be

I
I

I
I

equal to its dual.

The duality relationships among the eigenvalues and eigenvectors are

summerized in Figure 3.1. I

Now with the aid of Lemma 3.2, we are able to discuss the implicatio_ of

duality upon the dispersion surfaces. First let us note that the dispersio_ _ I

surface for the electric field is not necessarily equal to the dispersion sur-
I

face for the magnetic field. By this is meant that the zeros of det G E are not I



I
I

I

I

I _ -- O-- GN('_,w,X) -_.. H_--k _ M.E. = Es-O

I Electrostatic H3= 0 = M.E.

Figure 3. I.

I
I

I
I

I
I
I

I

Magnetostatic

Es-_ ----- GL_-k_)--).3-- 0

Duality relationship among the eigenvalues and

eigenvectors of..G E (_,_0,k) and GH(_,_,k).

(%(k,_,x) =- k x s-1 __ XK; %(k,_,×) =
-k x K-1 k x - kN;_ = dual; M.E. = Maxwell's

_.qu at ions).
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necessarily equal to the zeros of det GH. A warm plasma is an appropriate

example. Hence the phrase, "the dispersion surface of an electromagnetic field,"

is not precise. For the dispersion surfaces to be equal would imply that the

zeros of det E equal the zeros of det _. In truth, the relation between the two

dispersion surfaces is duality. Lemma 3.2 can be used to explain a finer struc-

ture among certain sheet_(S) of either dispersion surface. Consider the disper-

3

s ion surface for the electric field, i.e., det GE = (det K)_N S. = O. The sheet(s)
i=l 1

defined by S 3 = 0 is equal to the dual of itself. If the sheet(s) S. = O,
l

(i = 1,2) is not equal to the dual of itself, then the dual of sheet(s) S. = 0
1

is equal to the sheet(s) S = 0 (i _ j j = 1,2) This characteristic is exem-
j ' , •

plified by the general time-dispersive uniaxial problem of Section 4. Similar

results apply to the dispersion surface for the magnetic field, det GH = 0.

After this discussion of the implications of duality upon the dispersion

surfaces, eigenvalues and eigenvectors, the procedure to obtain the electric

field from the first part of this section by duality should be self-evident.

From the previous formulation, the field _:I_, _1 could be found in

L .J

three ways: (i) by the equation GH(_,co)H(_¢o ) = - jcoEO Mm(_,to ) and Amperes law,

(2) by the equation GE(_,co)E(_,o_ ) = - jolt° Me(_¢o) and Faraday's law, and (3) by

the equations GH(-_,co)H(_,¢o ) = - jcoEO Mm(_,_o ) and %(_,_o)E(_,¢o) = - ja_t O M e (_,¢o).

Only the last method is symmetric in the field components. All three methods

depend on either G H or GE. That is, in all three methods, Maxwell's equations,

with an assumed form of constitutive relations (D = 6E, B = _H), were reduced

to an equation envolving only one field component, E(k,_0) or H(_,o_). However,

this relatively simple reduction may not always be possible. If the flux

quant it ies , D and B, are linearly related to both the field intensities , E and

I
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I
I

I
I

I
I
I
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I
I
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I

I
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H, then the simple reduction is not possible. An example of such a coupled

constitutive relation occurs for the fields in a moving medium° In general,

the linear constitutive relationship may be written as

Ff = =UF where Ff = [D,B] and F = [E,H].

Thus, it seems desirable to formulate a method to find the field due to a source

in terms of the characteristic fields in a symmetric manner that envolves both

E and H, and that circumvents the difficulties that arose in the previous formu-

lation.

3.2 Definitions of Symbols

Let us define some symbols of quantities (vectors, matrices, functions) in

the Fourier transform domain.

F = [_] (six-vector of the electromagnetic field elements)

(3,30)

(six-vector of the electromagnetic source elements) (3. SI)

[0 -ikxl

o:l_ oJ (3.32)

U (sixth-order constitutive matrix) (3.33)

c¢,_) = o - o_ (3.34)

i
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= UF (six-vector of the electromagnetic flux elements) (3_35)

I (sixth-order identity matrix)

F ,v
i i

(the eigenvectors and eigenvalues corresponding

• = v. UF i)to the matrix equation OF I i =

(13 Z7 J

Ff_ : U_Fi (a _8

(3 39

I[: ( If?= (F-%UF-_ F. F-+U
I= I I Imm

(3.40

f

Vfi = Ii.V (V an arbitrary vector; Vfi , component of V

parallel to Ffi)

(3 :I

¥. = I.Y
1 1 (V an arbitrary vector; ¥i' component of V

parallel to F.)
1

(3 _2

3.3 Characteristic Waves

By definition, characteristic waves are the fields which are describ._a _.,

the eigenvector, Fi, and its associated eigenvalue, vi, that are the solut: _-

i
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the equation

F_ = Z/i UF i (3.43)

Since 0 and U are sixth-order matrices, there will be six characteristic waves,

i.e., the index i will run from one to six. When the eigenvalue, vi, is equal

to j_, then the eigenvector, Fi, will be a source-free solution to Maxwell's

equations. However, the field, Fi, corresponding to v = v i may not encompass

all of the solutions to the characteristic equation. Field vectors for the

characteristic equation exist, if and only if

(3.44)

But

det "-Z/ = (detU) _(Z/i-U)
i=l

(3.45)

Hence, other solutions will exist when det U = O. It is not necessary that

the determinant of U equal zero identically. In general, U will be a function

of the transform variables _ and k. Also, U will be dependent upon other

parameters. Thus for certain _, k and other parameters of U, the condition

det U = 0 may be satisfied.

At this point it should be emphasized that the eigenvalue problem that

concerns us is in distinct contrast to the usual eigenvalue problem. The usual

eigenvalue problem deals with the question: Given a medium, normally isotropic

and homogeneous, contained in certain boundaries with "walls" that may in gen-

eral be described by an impedance, what are the source-free solutions or modes

that may exist? These eigenvalue problems encompass both the bound case

(cavities) and the unbounded case (waveguides). They are in the time-space

I
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domain Ihe modes then are a superposition of the source--free waves that may

exist in the unbounded medium in su,cn a way that the boundary conditions are

satisfied For exa_ple_ in a _acuu_ filled perfectly conducting rectangular

_a_eguide_ four appropriateiy zhosen plane waves comprise a mode. In a per-

fectly conducting circular .aveguide, an infinitely nondenumerable number of

appropriately chosen plane wave comprise a mode° :Ihe eigenvalues in this type

of proble_ are largely determined ty the boundaries_ In our problem, however_

the mediu_ is of infinite extent¢ Also the domain of consideration is the

Fourier domain in contrast to the reai space_time domain_ _he eigenvalues and

eigenveztors are entirely a function of the matrix operators 0 and U. The

operator 0 is a result of the fcr_ of _axweli's equation only and is indepen-

dent of the medium lhe operator _ however_ is the constitutive relationship

and henze comprises the entire ei_tromagnetic description of the medium°

lhus, it can be said that elgen_lues-and eigenvectors are a function of the

medium oniy_ In fact_the constitutive relationship U can be completely ex-

pressed in terms of the eigenvaiues and eigenvectorso

Proof_

(3.46)

where

/__: _)+ }d) U (3.47)

6

6

LI = Z Z/i ( FrO- -'= ri) .t-i

(3, 48)

(3_ 49)
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and OF. are zero, the limit must be taken forSince for i = 3 and 6 both v i 1

these terms. It must be emphasized, however, that knowledge of v i and F i at

one frequency is not sufficient; v. and F. must be known as functions of k-
1 1

and _. Equivalently, a knowledge of the characteristic waves at every point

on the dispersion surface in four-space (k,_0) completely determines the

electromagnetic properties of the medium.

Certain properties of the eigenvalues and eigenvectors may be determined

by only knowing the symmetry properties of the operators 0 and U• It is easily

÷ 0+
shown that the operator 0 is skew-Hermitian for real k, i.e., 0 = - . Assume

that the medium is lossless. This is equivalent to saying that the operator U

is Hermitian, i.e., U = U+ With these two facts it is easily shown that v.
• _ _ • 1

is imaginary. This follows from the fact that (F T OFi) is imaginary, (F_i =UFi)

is real and that v i = (Fit OFi)(Fi _ __UFi)-I. Also, there exists an orthogonality

property among the eigenvectors. The conjugate transpose of the equation

F_i. OFj = Vj Ft =UFj is the equation FtOFj i = v j j=IF_'UF'" Use has been made of

the symmetry of 0 and =U, and that vj is imaginary° But we independently know

Ft.UF . Hence (v i - v.)Ft.UF.. Therefore for v _ vj
that

j OFi = vi j= i ' j j= 1 ' i '

CFi = 0 or F_Ffi = O.

To better understand these characteristic fields for an arbitrary Hermitian

constitutive relationship, it may be profitable to digress for the moment to

correlate the characteristic fields from the six-vector and previously considered

three-vector methods• Naturally such a correlation implies that the constitu-
r-% n--1

v, i.e. U =1 _0 _ I since only then is the simpletive relationship is "diagonal, , =

L_ __A
decomposition into three-vectors possible.

I



3.4 Relationship Between _(v), GE(k), and GH(k)

It has already been established that

GE/Xl - -k'_ P-o__"_x- XEo'E

-I
GH(_, ) : - _XGo_-I_'x - X/J'o /_=

and

77/(/1) : for U:

Further define

I -I
GE(X) =tZo GE(XI

GH(X) :Eo'GE(X)

Using these definitions it may be shown that

G_:(-/_.oE o Z,'2 I 0 ]: 0 GH(-P.oEoZ, '21

Since

5O

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

I
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and

then_

Therefore

det /_(-I/) = det

0 G H 0 I 0 G_

(3.57)

det

I°_°1/_'_(l/) and det
0 G H

= (det G_)(det G_)

[ ] [ ]2-_(-Z/)U-I_(_/) =(det U-l) det _(V)

I

= det G E (-c-2V 2 ) det G H (-c 21/2)

(3.58)

Or

det_(_,={_det__#)detG_(-c-ZY z)][{det_,det G_(-c-2Y2)]I '2 (3.59)

This expression can be simplified further by using the following lemma.

Lemma 3.3:
(det _)det G_- (-cZ/./z ) : (det E=)det Gl_(-c2I/2 }

Proof: Define

G_ (-c-2 Z/2): A __#-'A.C-21/2(=
(3.60)

51
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(3.61)

(3.62)

(3.63)

(3.64)

(3.65)

(3.66)

and

G _ . -2 2, -I 2U2 E

for an arbitrary matrix A

[ hr. 11

-, _ __2 )-_A_ GE( //2)__GZ(-C2U2_, /_.LA

-I //

def Adef_defGE / = de? GHdet/__£1del A

OI

. _- n( (2 z/2)det_LdetGE(-(22) detgdetG H-

In particular} if A = - jkx,

/ -2
def__ detG/(-C-2Z/2): detEde_G t(- C ;/?)

E =

Now the determinant of _(v) can be expressed as

det _Z(Z/) : _+ de,/.___=defGE (-_2//2) : --+det _ de'6'(-C2Z/2)=H

lhc _ign ambiguity occurs since the square root has been taken. However, since

lht d,,lermJnant of _(v) is set equal to zero to find the eigenvalues, the sign

..... lli_iellt is of no great importance at this point.

l ew observations concerning the preceding mathematics are in order, par-

I i_ularly about the relationships between the eigenvalues and eigenvector of

the three-vector and six-vector methods. One apparent discrepency is contained

I
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in the question: Why does the three-vector and six-vector methods result in

three and six eigenvalues and eigenvectors, respectively, particularly in

light of the fact that both methods represent Maxwell's equations for the same

medium and both sets of resulting eigenvalues and eigenvectors are sufficient

to completely represent electromagnetic propagation in the medium? The answer

to the question is found in Equations (3.55) and (3.66). Both Equations (3.55)

and (3.66) indicate the relationship between the eigenvalues of the two methods,

-22
i.e., k = - c v This shows that corresponding to each of the three eigen-

values k there exists two eigenvalues v = _ jc(k) I/2_ If F = [E,H] is an

eigenvector, i.e., _ (_)F = O, then from Equation (3.55), E and H are eigen-

vectors of _ and %, respectively° Conversely, a pair of eigenvectors E and

H, corresponding to the eigenvalue k of % and GH, is also an eigenvector of

Z_(v). Moreover, the six eigenvectors F. are not completely unrelated as one
1

might surmise from the fact that corresponding to every eigenvalue vi, there

exist another one, -wi c There is in fact a relationship between eigenvectors

corresponding to v and -v_

Assume that corresponding to the eigenvalue w, F is the characteristic

field, i.e.,

(3.67)

v
Now we claim that the characteristic field, F, corresponding to the eigenvalue

v
r _

-V is F = [E,-HJ, -iCe,,

V v
OF = - _ _U_F (3.68)
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This is easily seen by distributing the negative sign of -1_' with the preceeding

matrix elements and the muitiplying on the ieft by 0 -I . The result is

Equation (3.6"/) which was assumed to be valid.

The foliowing table will summarize the relationship between the character-

istic fields of the two methods,

TABLE I

[ ] v[ ]X I E I H I l/1 F I : E I ,H I -U i F_ = Ep ,-H,

_'z Fz = E2 H2 -//2 F2 = E2 ,- H2
X 2 E 2 H2

,,,'3:0 F 3 = [E3='QO]

k3:0

-IP

E3--k H3:0

E3:0 H3.--_ U3=0 F6: [0,H6=_]

Three-Vector Characteristic Fields Six-Vector Characteristic Fields

3.5 Completeness of Characteristic Fields

Before any attempt is made to represent a fleld due to a source distribution

in terms of the characteristic fields_ it first must be established whether such

a set of fields can represent the desired field, ioe., does the characteristic

fields form a basis for the vector space. Let us consider this question in terms

of projections.

A projection I on a Hilbert space, H, is simply an idempotent (I2 = I.)
i 1 1

linear transformation of H into itself. The range and null space of Ii. are

M i = [II X :X_H] and N =l [ IIx= O:X_H] , respectively. Thus, the pro-

jections I partition the Hilbert range space. From this we see that 5. defined
i 1
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as (_ _Fi )-1FiF!l =U (i = 1,2, ... 6) are indeed projections as defined above.

Furthermore, they are orthogonal projections IiI j = 0 (i ¢ j). In our case,

• partitions the range space into the space of vectors parallel,the projection I 1

Mi, and orthogonal, Ni, to the characteristic vector F. If an arbitrary vectorl"

F is to be expressed as the sum of characteristic vectors, then it is obvious

6

that the sum of the ranges of the projections must span the space, i_1M.1 = H.

Now the sum of orthogonal projections is a projection. Thus, it is not sur-

prising that the sum of the projections is the identity projection whose range

6

=_ I = I Indeed, this is an equivalent statementis the Hilbert space, i.e., i 1 i "

as to the completeness of the characteristic vectors F..
1

f-

Analogous reasoning applies to the set of projections [If : i = 1,2, ... 6/ .
L- J

Hilbert space into sets of vectors parallel to the characteristic vectors Ffi

not F.. Therefore, the latter set would be more profitably used with flux
1

field vectors, whereas the former should be used with the field intensity vectors.

3.6 Spectral Representation of Fields Due to a Source

One of the most important purposes of representing: the field due to a

source as a spectrum of characteristic waves is to gain physical insight into

the process of propagation in the medium. Most often the source problem is

attacked in the Fourier domain by inverting a complicated coefficient matrix

followed by a Fourier transform inversion. Since all of the sheets of the dis-

persion surface will occur as singularities of the Fourier inversion integral,

the integration process is extremely difficult. Also, the mathematics reveals

little physical insight other than the singularities, i.e., the dispersion sur-

face which implies the source free solutions, are a prime determining factor in

the source problem.
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A number of questions may be asked concerning the relationships between

the source free problem and the source problem° A very significant question

is: what is the explicit relationship of each sheet of the dispersion surface

and its associated characteristic wave to the source field? Also, in what

manner d(,es the source excite the spectrum of characteristic waves to form

the sour(:e li_ Ld? These and pther questions will be answered in the process

of findin_ [e spectral representation of fields due to a source.

There l_ at least two ways of deriving the spectral representation of

the source ;_elds. The first and perhaps the simplest is to express the

source i_ tcrus ¢_f and assume that the source field may be expressed in terms

of the ct_nra¢_teristic fields. This is possible since it has already been

established _at the characteristic fields are complete and may be used as

a basi_. AI_>, an important factor is the orthogonality of the eigenvectors,

Actually lhe s()urce will be expressed in terms of the characteristic flux

fields_ lfl_ _ince the source itself is a flux as can be seen from Maxwell'_

equation_. Tl_at is, let

6 6

{=1 i=l

Cfi is the _ )nponent of the source that is parallel to the characteristic flux

field F "_hen use the orthogonality condition to determine the coefficients
ii °

_i o Therclore, Fi* C = _i F*i Ffi or _i = (Fi f Ffi )-l F'tl C° Hence,

Similar::,,

6

c: X IF}F,,_-'_,,F,_c
i=l

6 6

i=l i:l

(3.70)

(3 71)
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Fi(k,_) is the component of the source field that is parallel to the charac-

teristic field F..
1

6 6

(3.72)

But

/_F i = (Z/i-j(,d) Ffi (3.73)

and

Fjt?'_ Fi = (z/i-jW)Fi t Ffi 8ij (3.74)

where 5 . is the Kronecker delta. Therefore
19

(2i (Z/i-J(#) Fit Ffi = ,/_i Ft Ffi (3.75)

and

c_i=(_i -jw)-'Bi (3.76)

Equation (3.76) shows an interesting fact. The component of the source field

parallel to the characteristic field F. is completely and entirely due to the
1

component of the source that is parallel to the flux field Ffi. Moreover, this

component is only affected by its own sheet of the dispersion surface and not

by the sheets of the other characteristic fields. Now the component of the

source field Fi(k,_ ) parallel to the characteristic field F. may be expressed1

in its spectral form,

F i ('_',Q))= (1,/i -jO.,I) -I (Fi t Ffi)-iF i FitC (3.77)
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The total source field as a spectral representation becomes,

[=I

The second method of deriving the spectral representation in contrast to

the first is to directly express the matrix operators _ and in terms of

the characteristic values and vectors without making any assumptions about the

source or the field. If the first method had been determined at the outset,

then it would give a motivation for the expression for _ Let us postulate

the expressions for_ and _-;in terms of the characteristic values and fields,

and then show that they are indeed valid. The appropriate expressions for q

and ]_;are,

=LI= I

(3.79)

and

The notations for I. and If have previously been defined.
1 1

sion for _Y(J_), it must be shown that
(

6

:U (_, jW)I V

(3.8o)

To verify the expres-

(3.81)

for an arbitrary vector V. Since, however, the characteristic fields are com-

plete, it is only necessary to show that the equation is satisfied for vector

I

.I
I

I
I

I
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V to be any characteristic field. Assume that

{" ]77_(jCO)Fj=U _ (Z/i -jCO) I i Fj
i=l

Then

(3.82)

(j(d) Fj = U(_j -j_} Fj ('." ort hogonatity ) (3.83)

= ( i/j - jOLJ)_._UFj (3.84)

: _2cj_irj ('." _/c_jl:o-_iu) (3.86)

Hence, the expression for _(jOJ)is verified. Perhaps the simplest way of veri-

fying the expression for772-l(jwiis to directly show thatT_ij(lJiT_-l(jw) : I,i.e.,

?72 (j_)u-' [ " ]T.I_,-i_l-' z',
i=1

= T (3.87)

Now

6 6

Z( Vi-J _)-I Ifi]} = Z( Z/i -J_)-I_(J_)¢lI[
i=1" i=l --

6

=_(Z/i
i:i

-j_)-'_ (joJ) I iu"'
-- f

( "" definition of "i"i and Ti)

6

=2Uii u-_
[=1

(3.88)

(3.89)

(3.90)



6

=Tit
i=l

6O

(3.9l)

= I (3.92)

Therefore_ the expression for _-(jLt))is also verified.

To derive the spectral representation for the source field F(k_)_ it is

only necessary to use the spectral representation of the inverse of the field

operator_(jC0)which was given above. Thus

6

i:l

6

:U-I_._ (Z/i-joJ)-icfi
-- i=l

(3.93)

(3,94)

or

6

Ft (k, (._J) : ( Z/i - j(.U)-I C fi

i=l

(3°95)

Not only is this expression compact_ but it is also quite revealing in physical

insight. However_ before the physical interpretation is given_ let us show

one more fact. Resolve the source flux field Ff(k,_) into its components paral-

lel to the characteristic flux fields.

By definition• the component of Ff(k_) that is parallel to Ffj is

Pfj(k_) = If3 Ff(_,_). Using Equation (3.95), this yields

6

Ffj(_,_) = i=l_ (vi - Jw)-iIfj Cfi

I

I
I
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Now because of orthogonality I f
j Cfi -- 5ij Cfi. Therefore,

and

Ffj(k',Q.)) = (Z/j --jQ.))-ICfj (3.96)

k

.°

_' Ff ([,oJ} = _ Ffi (k:_)) (:},97)
i=t

Again we arrive at the conclusion that the componenf i_,f i_he source field

that is parallel.to the characteristic flux,f_e!d _ Ffj, is solely excited by
\

the component of the source tha.t is parallel to the characteristic flux field,

Ffj. Now using Equations (3.69), (3_96),. and (3.97), a physical interpretation

to the source field may be given. Simply stated, the Fourier transform of the

flux field Ff(k,_) is'_,@um of the components of the source parallel to the
%:

%

characteristic fields, Cfi , ea,ch divided by f_£srespective, sheet(s) factor of

the dispersion surface, S = (v. _- j_). This fact is illustrated:,_in Figure 3.2.

It is also evident that there exist"source distributfens such that certain
°

"_ -:, " r,,,- "

sheets of the dispersion surface and their respective cha,/_cteristic _ields

play absolutely no part in the total field, _ namely, those source diStribtltion$

which are orthogonal to the said characteristic fields, i.e., C's sdch that

= O for some index j.
J

In the real space-time domain, the flux field may be given as

6

,_ 17,(T',t) = Z "_fi_.') " .... (3.98)
' .... :;:: ....... . " i=l . ;;.

where _fi(_,t) = _)i4_ _ fi and Qi and _fi are the inverse Fourier trans-

forms of S -I j_)-i= (v. - and Cfi, respectively. The convolution is a four-i 1
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I
I

I

/_,,,_,o, I!

f 7,/ ,,
!

,
Figure 3.2. The Fourier transform of the flux field,

Ff(_,_)_ in terms of the "characteristic
sources and the sheets of the dispersion

surface.
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dimensional space-time convolution. In the space-time domain the source flux

fi41d ,.,qf(_,t) in terms of the "characteristic sources" is illustrated in

Figure 3.3.j_ ........ , !

At gl_i_[_int' the_'ma_trixGreen's function r is easily determined. By

definiti_ the matrix_reen's functioh r (_,t) is an operator such that

' .7#_I!_ ['('_,t )e '_(r,t) (3°99)
¢ i-',

•, ,.. f. '- _fNOW the "characteristic source" is eli= _1- _ where, is the inverse

Fourier transform of the op_'rator If. Therefore, from Equation (3.98) and

since the convolution operations are associative_ the source _lux field is
. %

" ", 6 f ,
. _f(_,l) = * (3.100)

Thus_ the matrix Green's funct_o_a in terms of t,l_e characteristic fields and

the influence of the dispersion surlace (the operator is easily ex_.ressed

in terms of the characteristic fields) is %

Y

Fir,t) Q _ (3.1Ol1
.f

i

Alternately, the matrix Green's function could have immediately been"_d_t, er_ined

-I -I f

from the inverse Fourier transform of U_ liED) which is equal to Z S. Io.i=l 1 1

It should he _ emph_/sized"ghat these results _re geT_eral and .th_:t "the only

conditions that h.a_e been_mad_'-_Oe that the medium be homogeneous, iinear and

lossless, i.e., have a Hermitian constitutive relationship°
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__ gf6 I
I
I

..4e.

Figure 3.3. The ..s°urce flux field, _f (r,t). , in terms of
.. , o II

the characterlstlc sources aL-,d the in£1uence

of the sheets of the dispersion surface.
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3.7 Equilvalence Between Formulations

Again it is instructive to show the equivalence between the six-vector

and three-vector methods for the source problem. Let _ = and

mple deU = U. The off "diagonals" of U must be zero for otherwise the

coupling between the E and H vectors does not apply.

I

I
Q J

Multiply both sides by -_U

But

F = C (3.zo2)

I
I

i
I

I

Therefore,

I':l-,7_ U-IC = -j(.,jCJ= --jOL) I " -I" / =-j_ (3.103)

= + _" kXE kx,.TeJ m

-_u-lc_ = -jfJL_C / (3.104)

I

I

6

= U -I7/'/_ -I _. _ Z/i-jOJ} -I I i =,,
i=l

(3.1o6)

(3. t07)

i Therefore,

i=l n:l

( Z/n + j(d)-' I i U-I UIn U-I(-jO.)C / ) (3.108)

I



6

=._. (v_ ÷J)-' Ii _u"(-j_c')
i:l

(orthogonality)

6

F (_',_) = -j_oEo i_":

66

Since k I = k4, k 2 = k 5 and C'

terms. Therefore,

(3. 109)

(Xi-ko2)-IIiu_c ' ,('.' ),i = -Z/i2/_oEo ) (3.110)
w

is independent of an index, we may sum these

Now

F i (_,QJ)+ Fi.3(_,Ld) = -j(d/_oE o (X i -k2o)-I(I i + Ii+ 3) U_-Ic '
m

and

for i = 1,2

Ther_ fore,

since
v

Fi+ 3 = F.1

,(i:I,2) (3. zii)

I i = (FifU_Fi)-'FiFifU (3. zi2)

(F it U_Fi ) = (F it+sy F i+s) (3. i13)
w

U (3.114),* f'li+li+3 : 2(F. UF i
HiHi i"

I

I

I
I
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And

2

z J _ ]-iF (_',cO) = -2 joay.oEo_ (Xi -ko)- (Fi'IuFi
i=l

°,]c'Hill

- jC_#o E o

i For i = 1,2

i = 3,6

2)-I I()'i-ko (FitUFi)- Fi Fi tC'

(FitUFi) --2(Eit_EEi)-- 2(Hit#Hi)

and for i = 6,

(3. iis)

I

I
I

I
I

I
I

I
I

I

Using these simplifications, Equa, tion(3.115)_ reducesto that: of the earlier

method through _ and G_. Hence,

5 :)-IE (_,0_)=- jOJ/ZoEo_ (Xi- kZo)-' (E it E E i Ei EitMe
i-I

i

(3.116)

And

3.8

H (k,00) : -j6d#oE o
i=1,2,6

2f, f,(X i -k o (Hi't/z Hi H i HitM

Equivalence Between Formulations By Direct Addition of Terms

m
(3. 117)

An alternate and perhaps more illuminating correspondence between the two

formulations may be made by the direct pairwise addition of the terms corres-

ponding-- to v. and -v..
1 1 •
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Fi(_,W)+ Fi+3(_,OJ)= (//i -JoJ)-JTi u-IC +(-_/i -JOJ)-i_i U-IC (i=1,2) (3._._)

(3. 119)= (Z/i-jQj)l(FtUFi)lFiFitC- (Z/i+jQ))l(FitUFi_l_i_itc

(3. ]20)

_Fi'U_F i

-I -Iv ]=(FitUFi _l 1/i-jOd)FiFit-(/Zi+jOd)Fi_i t C

C (3.121)

i) _,:.o o f :

(Z/2+Oj2) HiHi t + (Z/i2+Qj2) HiEi t 0

Lemma 3.5 :

Proof :

-jkxE i = -Z/i_H i

Z/i H i = j#-I_xH i

_,H,*: iEt_x_'

• (_- ,)Z/i H,t Jm : jQJEi t _x_- Jm

t
Z/iEitJe = jQJH i (_--_xE__-IJe)

-jkxH i = Z/ig E
1

Z/iE i =-jE-I_xH

Z/i E t = jHif'_XE -I
1

//iEitJe = jLDHit(_l---_x(lJe)

I

I

I

I

I

I
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Using the two lemmas it can be shown that

2//i

HIE:

C = Zj_u

= Zjod

o .,.: L("_.<"./J

Placing this in Equation (3.121) and collecting common factors we get

Fi('_,CO)+Fi,,.3(_',(d)=(Fi'l'uFifl
0 HIHi t

(i = t,2)

However_ the term in the braces is just C S.

There fore

Fi(_,O0 ) + Fi+3{_,OJ ) = - 2 j OO/_oEo ( Xi- k2o)"'(F it UF i )"' Cl ,i

(i = _,2)

Since k 3 = 0 and H 3 = 0

Fs(_,OJ) = (7/i -j(OF'(F_UF3)-OF3F:C

69

(3. 122)

(3.123)

(3.124)

(3.125)

(3.126)

I
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2 )-'(F; UF3) -I F3F; C= -j(dFoEo (X3- k o = (3. 127)

2 -I t -I tctF3(k,(.O}=-jWp.oEo(X3-k o) (FsUF 3) F3F 3 , (': E 3 IIk) (3. 128)

Similarly,

" 2)-'(F: U_F6)-I F;CF6(k,OJ) = -IWFoE" o(),6-ko _ F6 (3.129)

2 F: UF 6 , ('." H 6 IIk ) (3. 130)= -j(.O#o Eo ( X6-ko )-I( = )-IFsF6tCt ""

Now adding the terms gives the same equation which was found by the previous

method_ i.e.

F ("_,(,0)=-2j(,OFoE o _ (),i -k2o)-I(FitUFt) -I C/
i=l = HiHi'

(3.131)

which reduces to

and

-JCOFoEo _ (),i-k2o)"l(FitU_Fi)"lFiF_'C /
i = 3,6

I

I

I
I

I
I

i
I
I

I
I

I
I

I

2-, t" E:Me (3.132) IE (k',LO) : -j(.O,UoE o (X i -k o) (E i E_Ei)'-IEi

i=l - I

(3. 133) I

I

I

H (k,(.d) : -j_dp.o E o

i : 1,2,6

2)-'(H:FH )-IHiHitM m_. (Xi-ko i
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4. SPECTRUM OF CHARACTERISTIC WAVES IN A GENERAL

" TIt_.-DISPERSIVE UNIAXIAL MEDIUM

The general !time-dispersive uhiaxial problem is described by a matrix per-

°_-_-_ ,_: . _ ' [_ O -: K I 0

meability and permit,tivity. "of: the :form_ _L/'=--ILL° [Oi oNt N " ,and(_=_ I KO

respectively. Maxwe11Ts equations for a 1ossless medium are,

Curl E (r-_ = -j (,o/U.o N H ( r-_ - Jm ('_')

Curl H (7) j(.O__.,o KE ("_') -t- Je (7)

Eliminating the electric field gives the equation

,. (4.1),

where

• " - i " _ _ '

Z NH(T) = 'jWgoMm(r) (4.2)Curl K-I Curl H(r')-k o

M_7 ) = Jm(r-") -( Iio_----_o)Vx_'a_It) (4.3).

Taking the Fourier transform with respect to t he_space _aTiables. results in,

• .4

is the wave vector,where k

GH(-_') H(-_) =-]OJ Q M m(-_') (4.4)

GH('_) =-k-_Kl_ -"k_ N (4.5)

I
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(4.6)

Explicitly GH('_) is in terms of the wave vector _" = (_,rl,_)

GH( k ) =

2 2 2 -L ?7

-Lo_' _ (Lo_" +L|C-koN I) -LnC

2 2

-Lt_" C -L '17C (Lli_Z+ L|_-koNo )

The characteristic waves are obtained by determining the solution to EqL_tion

(4°4) when the source M (-_) is zero.
In

GH(k) is zero for nonzero solutions,

Then_

This implies that the determinant of

Denote the determinant of Gtt(k) by D(k),

D(_) = - k20(LoTI/02+ L,TI;2-k_o )(LtTop 2- L'T' C % kZo)tNI

wh_re p= {C2+'92) "_

(4.7)

!:,en<)_,.e SI_ 82_ and S 3 by

Sl----( LoTI/02+ LITI ko),

S=--(L,TopZ+L,T,_Lk_),

-I
where T= N and det N=INI

(4._)

Let

A=-kxKkx (4, C_)

I

I
I

I
I

I
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I
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I
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I

I
I

I
I

AH i = _iNHi (i=1,2,3) -

or

(A-Xi N) Hi=O

4-
We cla_ that k. is real and H'. N H. = O, i ¢ j

1 3 z

Proof:

(4.10)

(4.11)

H_AHi" ki Hti NHi (4.12)

I
I
I

(HTAH i)'l"= _' ( H_N H i )'1"

HIAHi = _: HTN H i

(4.13)

since A and N are Hermitian (4.14)

I (Xi-X:)HTNHi=O implies _i reo, if H4"iNHi:_: O (4.15)

(4.16)

HTiA Hj : _,j HTN H j

H_AHj = kj H_NHi since k. real and A, N Hermitian
1

I (Xi-Xj)(H'_'NHi)= O implies HTNH i =O if _i:)E_.j

I

(4.18)

(4.19)



Figure 4.1.

ko_o
_-y

One quadrant of the three-space dispersion

surface for a general time dispersive

uniaxial medium.
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The eigenvectors are_

"-_ A -I"_" _ A

Hi= kxz, H2=N kxkxz, HS= k

Then

I -I

I i=l i=1

G.(-_}:ZSi(HTN %)'3 NHi HTN
i=l

i=l

(4.20)

(4.21)

(4.22)

(4.23)

: H -I 2+ j.2. 2 H:NH 3 10+HTNH,:N,p,2 H_N" 2 NoNI(NIp NO_ )p, :(N, Z NO_2)(4.24,

I
I

I

,1" "-_ A

"HIH I =(kxz_'(kx_)) =

_ 0 0

(4.25)

I

| INo2_'2_ ' N:_"/7_ 2_No N ,_'/_"

-" _"-" "_-_No_/_ No_C_ -r,,oN,_p_I ","*,'_'_x"_N""_':"o",l_ ' '_'_ '"
- -NoN '77/0C NiPI

(4.28)

I



Figure 4.2. Eigenvectors for a general time dispersive uniaxial

medium. I
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_ _72 _7_

(4.27)

2 2

By consiciering the known invers( _ transforms of /9 _nd k _nd the proper

change ol variables, one can determi_e the function Gi_ i.e., the inverse

1- - Gitransform of (} N H ) 1 The funclions_ _ that result are,
1 1

G, (r-") = I
27TN, (log P) 8(z)

(4.28)

G2(T) : NoNI2GI.WG3
(4.29)

where

I I
%(;')=T,Tj

4.n.(TapZ.To z2) i/2

(4.30)

p = (x2+y2) I/2 (4.31)

Similarlv_ by considering the known inverse transform of (k 2 - k2) -I and the
• - O

proper change of variables_ ol_e can determine the function Qi_

-I

inverse transform of S. The functions Qi _ so determined are,
1

i.e. _ the

Ql =

2 2)b2
I/2 3/2 " KoN P +K N IzKoK I N I ({J ko( l I

4"Tr (KoN t P?" V2+ K I Niz 2)

(4.32)
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3/2 _t2 2 2 112

KI NoN I eJko(KiNo P +KINIZ )
Q2 = (4.33)

477" (KINo p2 b2+ K I NI z2 )

Q3= -ko; S(r) (4.34)

With the above functions it is possible to give an expression for the

Green's matrix_ F_ and the magnetic field.

3

F(r,W)=-JOJEol Qi t*Gi *Hi (_7)H'I'(v)8(';')i
-- i=l

(4.35)

-4P -4P

_(r,_) = F (r,OJ)_- Mm(7) (4.36)

4.1 Field of an Electric Dipole with a Longitudinal Orientation

The Fourier transform of source M (r) for the electric dipole
m

J (r) = 6(r) z_ is M (k) - k x z. The source M (k) is ortho-
e m (Ko_ 6o ) m

gonal to both eigenvectors H2 and H3. Therefore_

Mm(k) = Mml(k) (4.37)

and

-4b -eJ -e.

B(r) =-j(x),U.oEo O I (r) _" Mm(r) (4.38)

B(r)=-jcOp.oEoO I (r)* -I VXB(r)z
oKo

(4.39)

I
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I
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=,o.. _ A

B(r)= Lo#o_XQl(r ) z (4.40)

or

° _,_ 2 2,,2
B( r ) = P-o z -Jko(KoN I P +K I N I z )

4"if" VX e ^
(KoN I p2+ KI NI z2)112 z (4.41)

Because B(7) is transverse to the magnetic field and the particular form of

_he permeability matrix_ the magnetic field intensity is_

I
m

H{r} = _XQl(r)_
(4.42)

KoNI

It then follows that_

"qPD[r,(.O) : I VXH(T)- _(r)
j_

(4.43)

Notice that only one characteristic field_ and accordingly one sheet Of the

dispersion surface_ is involved in the source field.

4.2 Field of an Electric Dipole With a Transverse Orientation

The electric dipole is directed along the y axis in order to be able to

check Clemmow's 1 results. The source is M (r) = - ---:- V x K 6(r) y.

m 3_ °

In the transform domain this becomes M ) = + k x y.
m

M_,(:)=N,'p-2_x; (;, _)_( ' )_x;
(.A)Eo K I

(4.44)



.. __---_..N_I ip-Z-_x kxz)_'(' kxY
(._EoKI

N_p-2_/,- (,°_
COEoK I

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

(4.5].)

Mmlz I, r ) = 0

Mmz('_ = NoNI (NiP ?- + No_?") "t p'Z N-I'_ x'_,x_-

= - (, COEoKI

aG_

5_
t.._---I _ _GIMmzx _'7'1 = -]_o C]x=c_z

b_
_ __.. __ G,

N-_ x_ \00_o_,_

(4.52)

(4.53)

(4.54)

(4.55)

(4.56)

(4.5'7)

!
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QI _ GI = (21T)-3

4.e. -_

f/ -jk.r d_
e d_ d'?7 2 2

-m NI P2 (LoTIp2 + LITI -ko)

I

I

I
I

(2Tr_3 ?)7_ e-j[PPcos(,/-,)+_Z]pdPd_/d_
JJJ
0 0 -m Nip2 LoTI +LIT I -k

-2 - _ Jo(PP)e -j_z dPd_
(2"Tr) NII j j ..........

o-oo PILOT, p2 + L,T, _2 _ k_]

= (2Tr)-2(KITI)II2 //

0-¢o

jo(PP)e-j_' K,v/KIN_z dPd_l

/2 p2 _ k_ 1P[_ + LoT I

1 "_ ® -_io_,_-.'o I_-_,.,z! ,_= !KITI) -" ; J_9_o(PP___}e

,,r I _JLoT,,=-,II

1 aQIIGlay - _'-_ "_" /JI-(KIT')I/2 Qo (#p)e-'_LoT, #2-k21 _v_.zlae

o _/LoT__,o_
oo

C_ZOl*G= - KI Y {sgn. z) /
Oz C}y 47/" p

0

jl(PP)e-%/LoTiP2-k_!_/__ zl_p

I

I
I

I

Integrate by parts

u= e-_/L°T'p2-k_ I_-_,_,zl

-I _zle-J'°" _ -_ I__'_
du =

z J LoTI PdP

JLoTI P2 -k_

(4.58)

(4.59)

(4.60)

(4.61)

(4.62)

(4.63)

(4.64)
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dv = 3"I (P.P)dP
-Jo(PP)

=

P

_2QI*G i K I

(_z G3y 47/"

Y
p (sgn. z)

-I _zlLoT,
P

I -Jo(PP) -JLoT' P2 -k_ I _ I
p e zL

® JLo_,p_-_
/ JO (PP) e- PdP}

o . /LoTI p2 2-k 0V

oo

0

KI Y
477" P (sgn" z) I e-J_ol_V_,_,pzl -I _,zl

oo

./ %(_,_.)_-_'_-_o
0

p/2-k_

P/dp / }

The integral of Equation (4.66)

of Mathematical Physics_ Magnus

is Summerfeld's formula

and Oberheitingerl2).

(page 34

(4.65)

(4.66)

Functions

I

I

I

I

I

I

I

I

I

!

(_2Ol*GI _ KI Y r

_zc_y 47/. P (sgn. z)

e-J_olV_,",zl
P

-I _ zl
P

e-jkoJKoNIp2+KINIZ2p2 z 2 }
JKoN I + K I NI

(4.67)

( -_r y,_ _) IKV/K_oN, P end _/rK IN I z reel, T < erg -k 0 <_--#-



I

I •

l Now

I

I
i

i

Bl(r)= K--I" _z _y

m jk.r

fff e- d,_ d3 7 d_02" G, = 1271"1-3 pz _2 k_)
-m NI (LITop2 + L ITI -

=,___fff e-I oo_°.,
I
I

I

I
I

= (27r) -2 N;'

©® j_;z
ff Jo(PP) e- dPd_

[L P2 _2 20]0-=) P ITI +LiTi -k

= (27T) -2 (KITI)112

oO

- '(KITl}l/247/"f
0

O0_Pp) e-j__

_2 • pZ z10-ao P _ +LiT 0 -k

-_/L,.o_=-_t_/_,._zldp
3"o(PP)e

p JLITo P2- k_

I

I
(_Q=*GI = -{KITI _12 x j_

(_x 477" -P"
0

3",(PP )e-'_L ,TOP:' -k_ I_

_L,ToP_ko_

I
I

i
i 1

_ZQ2*GI KI x

_z C_x 4"rr-P
(sgn. z)

I dP

oO

f j|(pp)e-JLiToP2-k_ I_,_, zl_p
0

83

(4.68)

(4.69)

(4.70)

(4.71)

(4.72)

(4.73)

(4.74)

(4.75)

I
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Integrate by parts.

o-e-J_-,ToP'-_o_IJ_,_,"1

du-IKV"_IN,Zle-'/''Top_-k_)IK,,j"_,N__IC_,ToPdP

dv " a'j(PP)dP

-roPz -kz0

V --

-Jo(PP}

P

a%,.o, _, . { -_o(_.)-JL,ToP_-.SI_./_,_,zI "C_z O_x = 477" P (Sgn. z) p e Io I

PdP (4.76)
2

o JL,To___o I

477" P (sgn. z) p P

eo 2

./4_, _,Z_,N_,)e-_'oi N,zJ I
o ,/,,___o_ _'_'} "_ I

I

The integral of Equation (4.77) is Sommerfeld's

Mathematical Physics_ Magnus and Oberheitinger 12

formula (page 34,

).

Functions of

I

I

I

f

I

I

I
I

I
I

I



I

I
I

I a%.G, _,= [ ol _/_,,,I_ZZ'_; - 4"_ _--(sgn. Z) e-lk z
P

I
-I__,_,zl

P

e_Jk ° iNoP2 2+ KIN !z

-TT < org 2 2 <P end _ z reoi, --_ k°- 2

I

I

I

Kj _ x c_zc_x /

- "o a /,,,c)%2*G_tBzy(r) - KI 0y (_Z 03x

B2z{T) :KlNo_x Q2 (7)

BI('_ )= /Zo y {4--'_ (sgn. Z) _X _- e -jkOI K'V/_INI z I

(4.78)

(4.79)

(4.80)

(4.8Z)

(4.82)
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where

: p2 z2 )llaRI (KoN I +K I N I
(4.83)
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.o a y I_-_,_, I
Bix('_) = _--_ (sgn.

.o {= 4--_ (sgn. z) '--

zl e-jkoR'_RI

2 2

_-'[ I_zl e'_°"'1p, e-jk° -I _zl R,

(4.84)
I
I

I

,,'o',}
2

-" /_0 _ z _'-(x2-y 2) e jkORI jkoKoNI Y
Bix(r)=4--_ _'L" _ RI + RI

(4.85)

I- j eJkORI_/., }

I

I
I

+ 47/" (sgn" z) p4 e
(4.86)

__o, _(_){ -,.o.,} iB,,G)-_-_(sgo. z) e-Jkol_ zl-I _, zl e , (4.87)
RI

e_jkoR I.oy _. I_V;-_,._I I _, zl _, )4rr _sg_ z) -7 (e-J"° z -

I K,V/_IN_ z I ( jkoKoNI x

p2 _ R_

_oxYZ

47/

2

KoN I x / -jkoRI }
+ e

R 3
I

jkoKoNi

R I

(,_J____]e-J_"'
koRi I_ R I }

I
I

I
I
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I
I

2.o_(_n.z) -J=ol_--_,_zl
+ e (4.89)

47TP 4

BIz(_) = 0 (4.90)

B2x(_) = P'c (sun" z)

| 4_r
_ (_){e '_ol_v_,_,=l-i _ax e-JkoR2 }zl Rz <491)

I where

= .I, Z2 ) 112R2 (KIN 0 p2 KINI (4.92)

I ,o J'-(x2-_)[e-JkoI_ z
1 ,,2.,r,;"_,s,,n.z,t- ;_ I-I _zi _ J

x /jkoKINoX KINOX_e-jkoR2 }I +I4_;E,zl-p-- R22 . + R32 ) (4.93)

!
•U'O Z { (x2-y 2) e lkOR2 jkoKINoX2 eJkOR2_I =_ _._,_,_ ;_- _-_ (,-_/ _

I

I
,o (x2-y2) e-JkolKV/K--,','_,N_=I

- _ (sgn. z)
(4.94)

"" _ {e - e-jkoR2"_I B_,.,,)=FLOx(sgn, z) I -J_olJ;-_,.,zI IJ_,N,zI _ j

I

I

(4.95)



(4.96)

 o,,z ,2
4 77"p2 koR 2

2/_oXY (sgn. z)

47TP 4

(4.97)

B2z(r)=
/zO K_/_IN_ (_ e-jkOR2

4Tl" C_x R2
(4.98)

-jko#o_ 12NOel x j e jkOR2- ( / _ ,,.9_>
477" I koR2 R2

Because ofthe form of this particular source, that is, a source that is

orthogonal to the third characteristic magnetic field, H3(k) , there will be no

component of the field parallel to the third characteristic field_ B3(k).

This will be true of any electric source since then the Fourier transform of

the equivalent source M (k_) will be transverse to the wave vector k.
m

To arrive at the total magnetic fietd_ B(r)_ the components parallel to

each characteristic field must be added.
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3

B(r)= Bi(r)
i=l

(4. zoo)

I Bx(r) : P'° K'v_N__'_ _ Z [-('x2-y2) /e-jkoRI;_; - _;

I
e-JkoRi

I -,"o_o",,_(' .o':,) _;

_ eJkO R2'_

R2 /

*jkoKINo x2 (I koR2)j eJkOR21R2J
(4. i01)

e-jkoRl e-jkoR21I -,,o_o.,(,.o'-_,)_; .,.o_,.o(,'- .0_.) _j
!
I Bz(r) : -Jk°/L°_I2N°V/_IXT7r (I koRz)j e-jkoR'

R2

(4. lOS)

(4. lO3)

I
I

I

To the author's knowledge these results for a general uniaxial medium

of the type considered here have never been derived before. As they stand_

they represent the Fourier time transform of a dipole field with a time de-

pendence of a Dirac delta function in a time-dispersive medium; equivalently_

I

I

I

they represent the space-time solution to a time harmonic source. Several

remarks should be made concerning the above example. First_ each component

parallel to the characteristic fields is significantly different from the

,ot_**e_.o,et.a**.e*e.o_.,*.*_eex,( j"O'_" Z_dependence are

\ i,, ,-, _/
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not even evident in the total field. Although the interference phenomenon

is well known, it is particularly emphasized in the above. Observe terms

like

e-jk°R1 -JkoR2 /

e

R_ R 2

As R 1 approaches R2_ the beating phenomena becomes less rapid° R 1 may

approach R 2 in either one of two ways. R 1 may approach R2 along certain

directions in space or the medium may be degenerate. When the medium is

degenerate two of the eigenvalues are equal and the corresponding sheets of

the dispersion surface are the same. For this uniaxial case the medium is

degenerate when K1/K ° equals N1/N o. Thus, it is immediately apparent that

free space is a degenerate medium and for this reason there is a certain

amount of arbitrariness in the characteristic fields.

For the moment_ let N 1 = N2 = 1 in order that a comparison can be made

with the work of Clemmow. P. C. Clemmow published a paper entitled_ "The

Theory of Electromagnetic Waves in a Simple Anisotropic Medium," in the

Proceedings of the IEE_ Vol. 110, No. 1, January 1963. In this paper, he

gives a method to find the exact fields due to a time-harmonic source in a

nonspace-dispersive uniaxial medium. The above derived expressions for

N = I compare exactly with those of Clemmow. He shows that such a field is

related by a scaling procedure to a corresponding vacuum field. The vacuum

field is expressed as a superposition of a transverse magnetic field, $_

which the magnetic vector is everywhere perpendicular to the axis of symmetry

of the anisotropic medium and a coplanar transverse electric field; and dif-

ferent scaling is applied separately to each partial field. Only in passing

I

I
I

I

I
I
I

I
I

I
I

I
I

I
I

I
I

I
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is it mentioned that these scaled transverse fields are two of the three

characteristic fields in the uniaxial medium. Thus, the full signficance of

the characteristic fields is not utilized. Since only two characteristic

fields which cannot span the three-space are used, it seems questionable on

the outset whether the field due to an arbitrary source (both electric and

magnetic) can he described only in terms of these. However, the difficulty,

which Clemmow does not mention_ can be indirectly circumvented by using a

superposJtion of the fields for each type of source. Another difficulty,

the task of resolving the vacuum fields due to an arbitrary source into TM

and TE fields, is not a trivial matter. The whole procedure depends upon

the ability to split the source into components that excite each type of

field.

In I. Jght of the preceeding discussion let us _o back to Equat ion (] . 3) and

observe tl(: explicit role played by tile characteristic fields, We wish to

show that by the use of the characteristic fields the source resolution is

automatic and is not simply an art|face for a particular problem. Let us

begin by saying that the source field H(k) may be expressed as the weighted

sum of the characteristic fields. Thus, in general, all three characteristic

fields will be involved_ although for some source distributions the weighting

factor may be zero. Equation (4.4)now becomes,

_ Cli GHH i = --j{jJEoM m

i:l

But GHH i = S i N H i -/Xo I S i B i

3

Cti SiBi = -- j(DP-OEO Mrn t'_)

i=l

• Hence, we have

(4. 104)

(4. I05)

I
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The weighting factors a. are found by multiplying Equation (4.105) on the
3

left by H. t
j"

(4. 106)

At this point the prominant role played by orthogonality is easily seen. Also,

the characteristic field H. will not contribute to the total field if and only
J

if H% M (_) equals zero. This is exactly the case for H 3 and an electricj m

source current, since H 3 equals _ and M _) is transverse to k_'. Since
m

N= = =I' H I = k x _ and H 2 = k x k x _ then Hl(r) and H 2 ) correspond to the

scaled TM and TE fields, respectively. The important factor to be remembered

is that the TM and TE decomposition applies only because the two character-

istic fields are TM and TE. However_ the characteristic field decomposition

(spectral decomposition) applies for any medium.

Let us go one step farther to produce another result. As was previously

stated, Equations (4.101), (4.102) and (4.103) may be interpretated as the

time Fourier transform field of a source _t)=8(x,y,z,t) _. Now assume

the constitutive relatiQnship is independent of k and _. This assumption

makes the Fourier inversion possible. The results are almost immediate.

.,. _,o_V_,.,; .r-(z-_'_ s(' ' a(,---R,)
Bx(r,t) = 4"." p2 [ p-_ " ( --c'RI)R, R 2 )

y2
+KoNiG(+81( t- I--.-R,)+

R I ¢

I
_(t- ER,) K, No I

_; )+--_(+a'('-_)+
R 2

(4. 107)

_,,--_)}
R2

I

I

I
I

I
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ER2) )
R_ R 2

(4. 108)

R, -TR, )+ F, 7 --_-22_7-#('2 R2 _j

I

!
The support of the fields is two ellipsoids expanding with time in contrast to

I
I

I

the support in free space which is one sphere expanding with time. Thus_ an

observer at an arbitrary point in space will be cognizant of two wave fronts

not one. Although these ellipsoidal wave fronts are not of the same shape as

the sheets of the index dispersion surface, they are related. The ellipsoidal

surfaces are of course expanded or contracted ray surfaces, which may be given

I

I

in parametric form by

(4.110)

I
A problate elllpsoidal index surface will have oblate ellipsoidal wave fronts

I
I

I

and vice versa. Another point is made apparent by Equations (4.107), (4.108)

and (4.109). No point on the wave front can travel faster than the velocity

of light in a vacuum. Therefore, restrictions are placed on the arguments

of the Dirac delta functions which in turn places restrictions on the



permeability and permittivity matrices. Not only must the permeability and

permittivity matrices be positive definite but also l_No_ I/N 1 < K 1 and

I/N 1 < Ko_ K I.
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5. SPECTRUM OF CHARACTERISTIC WAVES IN AN ISOTROPIC COMPRESSIBLE PLASMA

Very few problems are solvable in closed form. As has been shown, the

dipole in a nonspace-dispersive uniaxial medium is solvable. No doubt even

some relaxation of the nonspace-dispersive restriction can be made. The

biaxial and magneto-ionic problems, however, as yet have not been solved.

Numerous attempts have been made, as the literature will testify, but all

results have involved at least one unevaluated integral. The closed solu-

tions for the latter two media have not been obtained even though they are

nonspace-dispersive. The problem of a dipole in an isotropic compressible

plasma of N mobile ion species is solvable in closed form even though the

permittivity matrix is both nondiagonal and is space-dispersive. The reason

why some problems are solvable and others are not seems to lie in the form

of the determinantal equation or equivalently the characteristic equation.

The eigenvalues of the solvable problems do not involve radicals whereas the

eigenvalues of the unsolvable problems do. These observations should be more

apparent after a comparison of several problems is made. For this reason and

to further illustrate the usefulness of the spectral decomposition, it is

instructive to obtain the solution of a dipole in an isotropic compressible

plasma of N mobile ion species by the three-vector method.

First we must show that the permittivity matrix for the lossless plasma

is Hermitian. The inclusion of a static magnetic field B will be made since
o

the degree of difficulity for proof is not increased.

Lemma 5.1: The permittivity matrix of a lossless compressible plasma with a

static magnetic field is Hermitian.

I
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Proof: Assuming the fluid model for a plasma is applicable the force equation

and the continuity equation can be written for each species of mobile _n

(including electron).

mj /)IPj-qJ_+(mi°_INj)_7nJ+qjB XtPj-=O
at

(5.1)

anj + NJ_ °/'_J =0
at

(5.2)

where a is the speed of sound for the j
3

th
ion given by

2

aj = _(.K3 Tj/mj

_j = ratio of specific heats at constant pressure to that at constant

volume

K = Boltzmanns constant

T = ion temperature
J

m. = ion mass

Equations (5.1) and (5.2) with Ampere's equation is sufficient to derive the

permittivity matrix. Eliminating the density n. from Equations (5.1) and
3

(5.2) yields

_-Tr--0iVV-vj+aj
(5.3)

where

(5.4)

The temporal and spatial Fourier transforms of Ampere's law and Equation (5.3)

,I

I

I

I
I

I
I
I

I

I
I

I
I

I
I

I
I

I



I

I-

I

I

I

I

I

I

I

I

I

I

I

I

I

I

!

I

97

are, respectively,

-4D .qp -qp _ -4_-jkxH(k,Cd) = jLdE'oF'(k,Og) + qj nj Vj + Je(k,0d)
J

(5.5)

2"",-T _ -" qj --

(Cd 2-oj k k -jO.)l/,j)Vj (k,O.)) =-jOJ _ E (k,(._)
(5.6)

° qi

Rj Vj (k,(JJ) = -joL) --_j E ('k,(JJ)
(5.7)

Therefore,

- qJ RI'E ('_,cu)
Vj (k,(.d) = -j(d m"--_-

(5.8)

2

-jkxH (k,(_) = jOJE"o - --R
• mjE" oI

E(k,(.d) + ,Te(k,OJ) (5.9)

From Equation (5.9) we see that the permittivity matrix is

2

E=E_oK=Eo[T-_ qjnj ;I 1 [ 2 - 1l mjEo R = E"o I-_(JJIRI
_--,. __ • j

(5.]0)

where

2

2 qj nj
O.)j -

mj E o
(5.ii)



98

The index j is summed over all species of compressible ions. As seen from

Equations (5.7) and (5.8) and the fact that _ is skew-Hermitian for real k

and _ R. is Hermitian. Hence_ the inverse of R. is Hermitian. It then fol-
3 J

lows that the permittivity is a Hermitian matrix, i.e.,

K - K (5.12)

This derivation has assumed that collisions are negligible (lossless) and that

the ion pressure for each species obey separate adiabatic relations.

From the previous derivation for the permittivity matrix it is observed

that,

Rj=(Oj z -0_'_'_ "T) (5.13)

and then

I 2- )-I _ I Oj k_ T

Rj j I - 2 2-_2
(aj k )

(5.14)

Therefore, the normalized permittivity matrix is

= J 2/ J
22/

2 2 2 _0 2(ojk - )

(5.15)

where
J

th
is the angular plasma frequency of the j

2
z qj nj

(,oj- mjEj

species_ expressed by

5ol Eigenvalues for an Isotropic Compressible Plasma

Since GE(k_k) and GH(k_,k) have the same eigenvalues_ it is sufficient

and easier to evaluate them explicitly through det GH(k_,k) = O. It will

ml
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become apparent that the form of K is the simplifying factor, K is of the

+ a, and K is of the form K-1 = 1/a I - (k 2 +

-_. -1

GH(k,_O,k) = (-k x =K l_ - k).. Therefore, the second term of =K has no

effect upon GH, i.e.,

G.(E.,_)-(-Z-_-_):--- ' I_'_--_-o_]o
(5.16)

Then

k2
det GH(-_, w,),) = --),(),- -_")2 = 0

2

(5.17)

From the previous section it is found that a = and

a _

b = _ J J . The eigenvalues are independent of the com-

j 2(a2. k2 _ 2)
3 ,.4.

plicated term b. Since a is independent of k, both eigenvalues k 1 and k 2

which are degenerate will have only one sheet, S 1 = $2 = (k2/a - ko2_ • The

sheet will be propagating for _ > ¢oj and nonpropagating for

J

In summary, there is only one degenerate transverse sheet due to the

eigenvalues for an istropic compressible plasma.

5.2 Transverse Part of the Field Due to an Electric Dipole

Since the eigenvalues kI and k2 are degenerate, arbitrarily choose,

El= kxz, E 2
(5.18)

I
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Also since the plasma is isotropic_ arbitrarily choose the electric dipole

source orientated in the _ direction. A magnetic source cannot excite plasma

waves; therefore_ at this time we are not as interested in the fields due to

it. With this choice of eigenvectors_ E l does not enter into the picture.

(5.19)

By partial fractions_

E2(,-",w): iwFo(k2--o_o['r,zCC'/C',_) (5.20)

Therefore_

2 2 -if2: I ('2 7_ 2 fl}(_-°_o)-(_)i_-(_-°_o (5.2l)

e-b/o%, }
= ok 0 47"/'I" 4"TTr

(5.22)

5.3 Plasma Waves

The eigenvalue for the longitudinal or plasma waves is zero. This implies

that propagating plasma wave must come from the real zeros of E_ K= E 3. Since

E 3 = k_

(5.23)

!
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After obtaining a common denominator and simplification_ one obtains
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I l, (.,. ,,_ _ -,._i)k_
• _ +_ _,.. _,

_.,,,_. _,z J \ oi/ I aj, \ ai/

i ,-3_-_ "-3- _ / z \ (5.s4)

• }\ oj/

I : ' thThe superscript (J) indicates that the j term is omitted from the product.

Except 'for the factor k 2 in Equation (5.24) the numerator of X3t K X3 is a

I polynomial in k 2 of order N. Therefore_ X3_ __KX3 (discounting the k 2) will have

I N zeros. Since the numerator of Equation (5.24) is a polynomial in k2 with
2

real coefficients_ the roots of k will occur in conjugate pairs. Hence 2 it

I is possible if all of the roots are real to have N sheets to contribute to

plasma waves. Restated_ the maximum number of real sheets (that cause propa-

I gating waves) for an isotropic compressible plasma is one sheet per compres-

I sible ion species. This is further verified by obtaining the determinant of
• $

K and comparing the zeros with the zeros of X3 K E3.

!

k j) ,-,.det K = - -
_JZ(o_k2-(_

I The zeros of X_ __KX 3 are the zeros of
@

iI 2 2

_T(k20J '+_'(_)J (J)/k 20J2)ol/ j oj \ oi
Xquatien (5.26) can be put into a form

I

I

(5.26)

(5.27)

I

i
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where k is the zeros ol (5.26).
J

The product of the zeros is

The sum of the zeros is

J . j (,_
l

(5.28)

2 { 2 2-w i )Z,j :T. ,
J J a i

(5.29)

2 2 k2
From Equation (5.28) one observes that for _ < E _. _ H < 0 implying

j J j J '

that there will be at least one negative zero_ _.e. _ at least one nonpropa-

2 2
gating plasma sheet. For _ > _ _ if N (number of compressible ion

j J

species) is odd_ there is at least one propagating sheet.

(E__KE3)-' -

Now consider the longitudinal fields

2 _

2

oJ E _ /T(j) k2 ('_
2 + 2

aj j a_ i ai

:_ + aj aj a i

oj j aj m _ ai

i/a is the residue of (E3t =K E3 )-I at k 2 = 0; therefore

Equation (5.30) does not have a pole at k 2 = O.

(5.30)

the second term of

E3{,_"CO)= -j(.dp.o(-k'_){,E_KE3 }-!E3E _ Me{,'k,(.d) (5.31)
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Me(k,(.O) = z
(5.32)

(5.33)

It

E3 (r'W} - 2
ok o

(5.34)

and

oo/r 2/r

J=,,o__vvTfff
(27r) ko ooo

2(JJ I 2 2
I- 2 -_ -"_i

Oj j Oj
2

0 i

oj/ j o i

(5.35)

• e- sinO/dkdO/d

I
and 0

OD

..- . _o VVT _ f
E3tr,OJI :(27T12k2 ° T -GO

Since the medium is isotropic, the integral is independ*_t o- _ 0 and _.

let 0 = 0 and integrate over _1
Therefore_ for the sake of computati0n_

[(, ti/ t_/ Tr 2 I _" wi
)j -'0 _ 7(.j) 2

o j oj oi /]

2 oJj Ill 2 tjJ k

O ] Oj 0 i

-jkre dk

The integral should be integrated over the closed contour, C, which is a

(5.36)

_e semicircle in the lowerpath along the real k-axis and an arbitrarl, ......

half k-plane. The path should be such that poles on the positive real axis

are included in the contour_ but poles on the negative real axis are ex-

cluded. Denote all of the zeros of
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2 +_. (.dj 7/_(j) 2

aj j aj

(5.37)

on the positive real axis and in the lower half plane by k i'or j = 1 to N.
J

N _ k2Then the denomonator of the integral of Equation (5.36) is k [I (k 2 ).
j Z

Then Equation (5.36) becomes,

"(7,w)- -jw_ o vT ^E3 - .'--E: V z
ok o u"-I ku "r/'(u)(ku- kj ) 77".(ku+k j )

J J

(5.38)

-jkur
-e

if all of the poles are simple. In general,

-"'-" " JW/_° VV T ^
I: 3_'r,°a} = 2 2-rr"----r

ok o C

5.4

(a - I) 77 -rr (j)
• - _ z
I aj aj o i

Res

k z __ + . _j .n.(j) z oJ

a _-_ i a2i

e-jkr

Total Field Due to an Electric Dipole

"" ' I "" II ""
E(r, (,d): Ez(r,f4J) + E 3 (r,OJ) + E 3 (r,Cd)

,,I=,-

E (r ,(,d) = -JOJ/_° VxVx ^ eJ'V/'°'k°r J('d/_°
Z +

2
ok_ 47Tr ok °

_.(7 ) zA

(5.39)

(_ 40)



i

I
I
I

I
I

l
I

I
I

I
I
I

I
I

I
I

I

iW#o

C

105

IRes e-lkr

(5.41)

The residues inside C are on the positive real axis and in the lower half

k-plane.

Note that for N = 1 this result checks with Equation (28) of Hessel and

13
Shmoys, "Excitation of Plasma Waves by a Dipole in a Homogeneous Isotropic

Plasma,"'Proceedings of the Symposium on ElectromaBnetics and Fluid Dynamics

of Gaseous Plasma, Microwave Research Institute Symposia Series, Volume XI,

Polytechnic Press, 1962, pp. 173. The "modal decomposition" of their paper

is not the same as decomposing the field along its eigenvectors; however, the

relationship between the two can easily be seen. The relationship is,

E(_w) :E2(?",oJ)+E {_o.)) (5.42)

, _ T'Z.cu
noe((.d;__W_) _P rl"_,(.d}=E3( , )

(5.43)

_(r,_) is not entirely longitudinal or transverse, but V P _E_/ (r,) is

longitudinal.



5.5 Pressure in an Isotropic Compressible Plasma

.th
The partial pressure variation for the 3 component is

2

Pj = ojmjnj = 7'jK'Tjnj

However_ from Equations (5.2) and (5.8) one finds that

nj (k, (.¢)) - -Jqj Nj"_T R] I E .---
mj (k,(x))

-1
Using R

J
given in Equation (5.14) _ tile partial pres_;ure P.(k,cc) i:-_

J

2

Pj(_',(x)) = joj qjNj -_T E(_,CO)

(e_. kZ- 0.) 2 )

whereas the inverse transform of P.(k_,) is;
J

--- e-J _'_ r _T ---: _- E(r ,CO)Pj(r ,(.d} -Njqj 47Tr

Thus_ the total pressure variation P(r_cc) is

P(r,(xJ) = Pj(r,(xJ) = - Njqj
J

e-J_ r _T -.-
4"/Tr

Notice that only the longitudinal field contributes to the pressL:,_,,
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(5.44)

(5.45)

(._!04G)

( 5° ,'i ; )'

(5.4s)
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6. RADIATION FIELD OF AN ARBITRARY SOURCE IN

A LOSSLESS LINEAR PASSIVE MEDIUM
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6.1 Introduction

For the case of an isotropic medium, the radiation field for an arbitrary

current source is well known. The problem of finding the radiation field of an

antenna in a cold magnetoplasma such as an ionized gas in a constant magnetic

field has been solved by Bunkin 14 and a number of workers. 15-19 However, such

solutions have been limited to a particular nonspace-dispersive media. It is

desirable to determine the radiation field for a general lossless linear space

and time-dispersive medium. It is preferred to find the general field solution

for any zone; however, as yet no one has achieved this for the cold magneto-

plasma or even the biaxial medium. For a cold magnetoplasma with one mobile

charged particle species, the problem is to solve nine first-order partial

differential equations. If a harmonic field is assumed, six of the unknown

variables may be eliminated to yield three second-order partial differential

equations in say the field variable _ . Usually the system of three equations

is attempted to be solved by the method of Fourier transforms. The solution

can then be expressed as a volume integral in Fourier space. Thus, the dif-

ficulty is a triple integral of a function with a complicated singularity.

Invariably, attempts at such a solution are expressed in at least one unevalua-

ted integral.

With the results expressed in terms of an integral,it_is difficult to

make comparisons between fields of different sources and to interpret the

physical processes. Thus, it is desirable, and for some purposes sufficient,

to find an asymptotic solution for the radiation zone. Notably, two asymptotic
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integral methods have been used in the past_ the steepest descent or saddle

point method and the stationary phase method. To first-order_ they produce

essentially the same results. For our purposes the stationary phase method

will be used since it will be seen to yield many physically interpretable

results. Only lossless media will be considered throughout. This is not

severe restriction since in a lossy medium the concept of a radiation J:Se!d

is not very significant.

First_ the principle of stationary phase is applied to a very general

linear system which encompasses both space and time dispersive media. Then

the results are particularized to some systems including warm plasmas_ which

are derivable from dynamical models. Notable physical interpretation of the

mathematical results are made.

6.2 Stationary Phase Method for Arbitrary N-Vector System

or

Consider a system of equations whose Fourier transform is

o -j cd F = C (6.1)

/_F :C (6.2)

where the N-vectors C and F are the source and field vectors_ respectively.

Also_ the N th order square matrices O and U are skew-Hermitian and Hermitian_

respectively. All of the quantities may be a function of all the transform

variables. Then similarly to Section 3 an eigenvalue equation may be defined.

OF i : z,,'iUF i ,i=1,2, ,Ikl (6.3)

I
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Analogous results concerning the eigenvalues and eigenvectors may be inferred.

Thus,

N N

i- I i--I

(6.4)

where I i = F U= F.1 )
-1 t

U F. F: and S. = v. - jco.
: 1 1 i 1

In a form that we will use,

the portion of the field that is parallel to the characteristic field Fi, is

F i (_,Q'): (F[7_F i )-' Fi F_FC
(6.5)

with the normalization of F. such that the components of F. contain no singu-
1 1

larities. Therefore, the inverse Fourier transform is

[_'(}"l)= (2-rr)-4////(FTT_Fi )-iFi FitC eJ(gJt-['r) d3kdQ)
(6.6)

The field solution as described above is _-_ot. unique in that an arbitrary source

free solution may be added to it. Furthermore, we wish the solution to describe

the physical model. Thus, all waves must originate at the source and no source

free solutions are permitted. In order to obtain such a unique field a "radia-

tion condition" must be enforced upon the class of possible solutions. Now the

solution is a frequency spectrum of time harmonic waves as the outer integral

of Equation (6.6) stipulates. Let it be required that each of these component

harmonic waves obey the "radiation condition." And let the Fourier frequency

variable, _, be slightly complex, i.e., replace j_ by s = a + J_ where a is

small and positive. Denote the frequency component field by _j .



ii0

(6.7)

With this, after the evaluation of f.(s_)_ the required field for the physical
1

problem is

LS*.i W
--(Z)

(6.8)

The reasoning for the mathematical manipulation of the Fourier frequency variable

is as follows. With _ positive the harmonic frequency component f.(s_r-_ is
1

increasing exponentially with time. Now if a source-free wave of finite ampli-

tude is propagation from infinity then by the time it reaches a finite distance

from the source it will be small compared to the exponentially increasing com-

ponent fi(s_). Thus_ if only the exponentially increasing waves are sought_

the source-free waves will be omitted. Taking the limit finally produces the

Fourier frequency component satisfying the "radiation condition." Let us now

asymptotically evaluate fi(s_r) for large r.

The denominator (Fit _ F.)a. is changed with the introduction of the new

variable s_ and its new form is approximately_

(6.9)
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If (So,Yo) is a root, i.e., F F i

to be zero when s = s + ds requires that
O

(So,_ o) = O, then for Fti F i (s,_)-P

-_= Yo-dY=To-ds F Fi _')_ F i (s,7 (6.1o)

,-le

Let s = j_0, _ = jk and ds = G. Then the new root is shifted to

] ] is=O'+jOJ, T=jk-O" F F i (OJ,k)} FiT/_Fi (OJ,-k) (6.11)

Since the operator is skew-Hermitian, the new root _{ has been shifted off

the imaginary axis. With this in mind, perform the first integration of f (s,r)
1

on a variable kll = k.r which is parallel to r with the transverse variables ki

held fixed. Evaluate the integral by the contour integration method. By the

Cauchy residue theorem we have

jR

i -jR

!

dYll + / (Fi'tT_ Fi )

L

Ce (st- Yll r} d-IFi Fi_ Yll

residues of poles in the contour

(6.12)

where L is a semicircular path of radius R in the right half plane in the clock-

wise direction. Then by substituting -YII for p and r for t in Lemma II of

Transform Calculus by E, J. Scott, 20 we have

I

I
I

/(FitT?_Fi )-' Fi F_ C e(S' - Yil r)dT, : 0 (r>O) (6.13)
R-_oO L

provided the components of i(F**_ Fi )-I FiFi-t C eSti are less than M/ I _,]K

_,enl_"I>"o'w,o_e,._._.const__,_>O._,._e_or_.



or

jR

(st- 711r) d(Fit2_Fi )-'FiF_Ce 7,,
R -,-oo

-jR

=-27TjZ residues in right half Xsl plane

_o

;( Fit_Fi )-I Fi F_ Ce (st -Jkur)dkll

-oo

=-27/" Z residues in right half 7wl plane
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(6.14)

(6. i5)

But it was previously noted that the poles in the right half plane are the poles

such that "_7k Fi F (w,k F ((1) <Ofor (3" > O. Since the source,

C, is assumed to contain no singularities, then for simple poles the residue at

a pole is

(?"_ Fit/_F/Fi)-IF i Fi t. Ce(St-}'r) (6.16)

Thus, we have

" ;; -I- -,'- -k-r)d2 k.._wvfi(s ,r) : il27/'1-2 -V k g i _'//F i (OJ, k F i • ±
s'j_

where _,
i+

and

Zi+

is the portion of the dispersion surface in which

(6.17)

Fief i (c0,k) = 0

Now perform the last two integrals by the method of stationary phase. Hence

the major contribution to the integral for large r is from those points on

_i+ where the exponent _._ is stationary. These are points where V _'_ = 0

or, equivalently, points where the normal to _i+ is parallel to r. In the

vininity of a stationary point k_*K_ we can express _._ as a second-order surface

in the variables transverse to r. Let the transverse variables k and k
i _2

I
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be in the principal directions. Becauee k.r is stationary and k and k
Ii 12

are the principal directions, kil , k II and k 12 form an orthogonal coordinate

system. Also, let PlK and P2K be the curvatures of the k surface at the sta-

tionary point k K associated with the principal directions k £i and _12'

respectiveiy. A positive value of curvature implies a concave curvature to r_

whereas negative implies a convex curvature to _. Then we have approximately_

k-r = k K.r + P IK(k£1 kj.iK (kz2-k12K)2- r (6.18)

By the principle of stationary phase the asymptotic form for r approaching

infinity is.

s--_j_(_Jfi(s'r)_j(277")-2 K "V'_ F F i (W,_ -I FiF*i C

k:k K

ej(W t-_K-r)

GO

_cO

• dklldkl2

where _ represents the sum of all stationary points on Zi+" The integral in

Equation (6.19) can be evaluated after possibly slight modification from most

integral tables. Hence,

-eP

j (Celt- k.r)
"e

7r sgn/:)2 )e- j _" (sgnPl+

(6.20)

21
But the product of the principal curvatures is the Gaussian or total curva-

ture, i.e., plP2 = ,,_ . Therefore, the asymptotic form of the field _ (r,t)

I



114

for r approaching infinity is

.eJ(OJt- k- r} d_9

- 1T
e J4 ($gn PI + sgn P2 )

(6.21)

And of course the total field for the system is,

N

(r ,t )7(r,t) = T i "
i:l

j_ t

_ oFor the special case of a time harmonic source (_ t) = _(r) e
3

Fourier transform is

(6.22)

, the

C t k, (.,0) : 2"Tr C(k) Bt o0- _o ) (6.23)

where 6 is the Dirac delta function. With this equation, Equation (6.21) is

easily evaluated to give

2/rr_

. eJ(Wo, -_'.';)

/r

e- j -_ (sgn P, + sgnP 2)

(6.24)

6.3 Application of Section 6.2 to an Arbitrary Six-Vector Electromagnetic System

The general description of an electrodynamic system can be expressed in

terms of Maxwell's equations (Faraday's and Ampere's laws) and an auxiliary set

L
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of equations. The auxiliary set of equations may be partial differential,

integral as the expectation of a Boltzmann's current, or simply an algebraic

equation as the Lorentz equation for moving coordinates. However, the aux-

iliary set will be coupled to Maxwell's equations by common variables. Thus,

often times when only the electromagnetic field is desired, it is convenient

to eliminate all the variables except the electromagnetic field variables
v 7

= L_J . In doing so the partial differential equations usually become

of higher order and other complications set in. Alternately, the space-time

Fourier transform of the general linear system of equations may be taken and

the extraneous variables eliminated by algebraic means to produce a six-vector

equation of the form,

I
OF " j Q)UF+ C (6.25)

where 0 and F are the Fourier transforms of _ = -Vx 0 and _ , respec-

tively. C t is the Fourier transform of the equivalent source involving all

of the sources of the original system of equations. And the sixth-order square

matrix U= is defined to be the constitutive matrix for the relationship Ff = =UF'

where Ff is the Fourier transform of _f =[_ I . Now Equation (6.25)is of

the form Equation (6.1) of Part 6.2 if the electrodynamic system is lossless

and the constitutive matrix, _, is Hermitian. Thus, the results of Section 6.2

follow. For this situation, however, as seen from Part 2.5 the quantity
F__ _

_ IFf_il: can be reduced further, i.e.,
L _ J

r ]_[Fit"_ff_Fi : 2J-PTi : 2J('Pei + Pm, )
(6.26)
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I
PTi' Pei' and Pmi are the total, electromagnetic, and medium average power flux

th
vectors, respectively, for the z characteristic field. The mathematical

definitions of P and P are repeated for the sake of lucidity.
ei mi

Pei = Re (Ex H*) (,f ms) (6.27)

I

I

I

Pmi : (.t) F_rtV_.U) Fi (rms) (6.28)2 =

Also from Section 2.5 it was noted that PTi is normal to the dispersion surface

th
and is related to the group velocity of the i characteristic field. Hence,

the radiation condition implies that

^ ((i. 29)r. Ug+ > 0

^- i_¢ior that r'PTi = i > 0 at a stationary point. Further, normalize the

characteristic field F. such that the length of its total average power flux
1

vector is equal to one. Define the number h(k) to be as follows

I
_7

_t-_+-(I_I) 2e'J T(sonP' +-sOn P2 -2) (6.30)

I

I

I

I

I

I

I
Using the above considerations the asymptotic expression for the characteristic

J_ield _ i(_,t) for the time harmonic source as given by Equation (6.24)source

reduces to

+Ji (r,t)_
K

-jh(k K )

477"r
F?C/('_K) Fi e j(OJ° ' --_K'r) (6.31)
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The summation is over all stationary points on _ .
1+

is given by

"Jr(7, t) = _ _|(r_ t) (6.32)

i=l

Note that this derivation is very general in that the only assumptions made

are that the electrodynamic system is lossless and that the medium and the

source are such that the condition for the contour integration of Part 6.2 is

satisfied. Also, note that Equation (6.31) gives the electromagnetic field

due to any source of the original system of equations and not just due to the

electromagnetic sources since _/is an equivalent source involving all of

the sources of the system.

6.4 Case of a Compressible Plasma with N Species of Char_ed Particles

Assuming the fluid model for a plasma is applicable, the linearized

equations that describe the system are

V_-_o_-t _-_

And again the total field

(6.33)

N

_7 x_'= Eo "_-f _ + j___I Pq j_j +_e

,j=l to N

(6.34)

(6.35)

T

O-'T_ j* )'j P0jV _j = -_-'j ' j= I tO N

where the quantities and their Fourier transforms are

(6.36)

R
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(Fourier transform)

E electric field

H magnetic field

Jm

_e

_m
Pm)

Pqi

electric source current

magnetic source current

.th
mean mass density of the j

mean charge density of the j

charged component

th
charged com-

vj

ponent

velocity field imparted to the j
th

charged

P_

F)

O)

P_)

J

X_

component by the sources

th
variation of the j partial pressure imparted

by the source (normalized by the number density)

th
mean partial pressure of the j component (norm.)

th
source term for the j force equation

th
source term for the j continuity equation

ratio of specific heats at constant pressure

th
and constant temperature for the j charged

component

8 o static magnetic field

Equation (6.35) is the force equation and Equation (6.36) is the normalized

continuity equation since the pressure is assumed to be proportional to the

number density to the _.th power. A number of assumptions are involved in
J

arriving at the above system of equations. First, the equations have been line-

arized and hence will more accurately describe reality for small variations.

The medium is macroscopically homogeneous and of infinite extent. A scalar

I
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pressure for each charged component is assumed; hence, shear wave will not be

evident in the solutions° Separate adiabatic conditions for each species of

charged particles are assumed. The latter two assumptions are equivalent to

the conditions for truncating the moments of the Boltzmann's equation. Also,

coll_sions are negligible. These assumptions are not unlike those used by

many investigators, however crude the model may be.

Now let us show that this system can be developed into a special case of

Part 6.3. Thus, one must find the constitutive relationship. After taking

the Fourier transform of the system of equations, eliminate the velocity and

pressure variation variables. In doing so, one arrives at the pair of _ector

equations,

i_xH: ]w 01 L_. n|E+ Je-i_ PqnR-,Ik On
n: I _ J n:l

hi

n-I

-j k x F" =-j C_/..Lo H -din

(6.37)

(6.38)

where the matrix R is defined as R = (- 2__ 0 I + j_ P B X + _nPon_ T)
n n mn qn o

and I is the identity matrix. From this it is easy to see that the constitu-

tire matrix and the equivalent source are

Eoi+ N 2 Rn I 0

0 _o I

(6.39)
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C' (-C,EJ)=

w

N N

J. -JZ p.°R;.';O°-j_ Z,% R_'¢
n= I =

Jm

(6.40)

Since R
n iS II(,rmJtian for real k and c% then U is IIermitian and Equations (6, 31)

and (6.32) for the radiation field apply for a time harmonic source.

R(,Fc,:r t(_ Lhe section on General Formt;1. "tt i on of .S[)eett.um of Chnracteristic

Wav(:s For a discussion oi' the eigenvalues and eigenvectors.

It has been determined that the radiation field is due to the stationary

points on the surface F_ F i = 0. However, this is also equal to

= i=Fi (_i J(llJ) F_ __Fi 0 (6.41)

= @_ the quant:ity F.t U F. must
Therefore, for the longitudinal waves when v i i = i

be zero and its surface found. Another al)par(:ntl.y added (ti £ficulty i:4 t:hat tl_e

quantity FT.C I may contain singularities whenever the matrix R be(_ome._ sin{,3_-
1 n

far. However, after a bit of algebra it can be shown that

F;c': E;J,,..[;_+ Z v_,_ ,-
!1=1 n =1

(P.i/)'. Pon)'rQ. (6.42)

I
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and thus can be made to contain no singularities with the proper normalization

of the eJgenvectors.

Greater consideration wt]] be made :for the case N = 1 in a later section

by the ten-vector method which is in some respects more desirable.

Note also that when N = 1 and P = P = 0 the usual cold plasma model
on n

used by numerous investigators results. Observe that the constitutive matrix
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is not a function of the wave vector. Thus, PT = _e or Pm = 0 and the normali-

zation is adjusted accordingly. This case, too, will be discussed further in a

later section.

6.5 Case of Compressible Plasma with N Species of Charged Particles

(6 + 4N-Vector Method)

Consider the same system of equations as described in Part 6.4.

the assumptions involved in arriving at the equations are the same.

Naturally

Now, how-

ever, let us operate upon the equations in a different manner to obtain the

solution. Instead of eliminating some of the unknowns, we will keep all of the

unknowns and seek the solution of a matrix equation of order (6 + 4N). This

manner of seeking the solution does not seem to have been considered by inves-

tigators before. For this reason and since there is a good correspondence

between the mathematic and the physical behavior, the (6 + 4N)-vector method

will be dwelt upon extensively. We wish to transform the given system of equa-

tions into a matrix equation that will be a particular case of Part 6.2. The

ordering of the equations and the normalization of the unknowns will be critical

although not unique. The motivation for doing so is to satisfy the conditions

of Part 6.2, i.e., make 0 skew-Hermitian and U Hermitian.

Order the equations in the following manner:

i. Ampere's Law

2. Faraday's Law

3. Force equations for particles 1 through N

4. Continuity equations for particles 1 through N

The continuity equations are to be in the same order as the force equations.

In addition, place all the terms involving partial derivatives with respect to
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time and the sources on the right side of the equal sign with the remaining

asterms on the left. Moreover, define the normalized quantities, _n '

_n : (_n /Yn Pon ) , n: i,2, ,N (6.43)

4N thThen the above directions produce the 6 + order matrix equal i,,n

O7- 0-7- (6.44)

which is given in Figure 6.1. The corresponding terms should be obvious.

Notice that already we have gained a benefit_ for the conservation of total

energy i_ expressed as,

7To_= _;O'f , 7"T_ (6.45)

O1'

I
I

I
C) C) ._" T

__T_i_)T : _" °_T 0_"_-
(6., 46_

where

N

_[)T = _ X _ +Z _'n Pon ¢_"n_nn
n=l

N N-

_T : 7 eo _o
n:l n:l

(6.47) I

I

(6.48) I

an(| I
N N

7T_ : _--t _.T : [_e+_,_m+Z _//'nnT_On + Z CT.LnO_...n] (6.49) I
n:[ n :l
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Now the Fourier transform of Equation (6.44) is

OF = jCd UF+C (6.50)

where O is {9" with the del operator_ XT_ replaced by -jk and U is

U

_o
P-o

Pml
Pro2

(6.51)

Now it is easily verified that for a real wave vector _ the matrix O is skew-

Hermitian. Not only is the matrix U Hermitian and diagonal but it is also

positive definite. Therefore_ the conditions of Part 6.2 are satisfied and

the results for the radiation field follows. Because of the symmetry of O and

U_ the usual type of eigenvalue problem can be defined.

OF i : XiU_.F i ,i: 1,2_'" • ,6+4N (6.52)

Since O and U are not a function of _ and are of order 6 + 4N_ the 6 + 4N eigen-

values will be a function of k only, They will be imaginary for real k. Define

the real valued surface _k. to be the locus of points (_ -jki(_)) in four-
i

space. Then for a given _ = _o the intersection of the two surfaces _k . and
1
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-jk. - _0 = 0 in four-space is a curve. But this curve in four-space is
1 O

equivalent to a surface in three-space ( k space) which is commonly called a

sheet of the dispersion surface at _ = _ . The totality of all these surfaces
O

in three-space for all i = 1,2,..., 6 + 4N is called the dispersion surface at

However, at a given frequency the plane -jk. - _ = 0angular frequency _ = _o" 1 o

may not intersect _ ; therefore, there may not be 6 + 4N real sheets to the
1

dispersion surface at a given frequency. As _ takes ali real values, the curve

in four-space which is the intersection of _k and the plane -jk i - _ = 0

th 1
generates the 1 sheet of the dispersion surface in four-space. This is

equivalent to relabeling the -jk axis as _.

Recall that for source free solutions it is required that

[0 ]det -:WU= :(det_)i__: Ik;-iw):O
(6.53)

But det U > 0; hence, all of the sheets of the dispersion surface are asso-

ciated with the eigenvalues of the Characteristic Equation (6.52). Therefore,

there is a one-to-one correspondence between all sheets of the dispersion sur-

face S = k. - j_ = 0 and the eigenvalues of the characteristic equation. This
i i

is in direct contrast to the six-vector method in which the factor det U(-_,_)

may be zero and contribute to sheets of the dispersion surface. Further

remember that it was possible for . U(k,_) F. = 0, for some i of the six-
1 = 1

vector method to coincide with a sheet(s) of the dispersion surface. But

t U F i = 0 if and only if F = O since U isfor the 6 + 4N-vector method, F I = i =

positive definite. This one-to-one correspondence between the sheets of the

dispersion surface and the eigenvalues is one of the advantages of the 6 + 4N-

vector method.
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Another property of the dispersion surface can be determined from the real

valued property of the fields, i.e., both _" and _e are real valued vectors.

The real valued property of the field implies that

Oil) = O*i-'R) (6.54)

The re fore,

Which implies that

I
I

I
I
I
I

[- ]def O(-k)- (-X(_'))U= : 0 (6.56)

and finally

det [0(_')-.- ( ×¢--Cl)u] - o (6.57)

Hence if ki( ) is an eigenvalue, there exists a j such that kj( ) = - ki(-k)

.th jthis also an eigenvalue. From this we have that the 1 and sheets of the

-4_ -4P

dispersion surface are S. = k. (k) - jc0 = 0 and S. = - k. (-k) - jc_ = O, res-
1 1 j I

pectively. Thus, if either point (k,¢o) or (-k,-_) is on the dispersion surface,.

then both points are.

The 6 + 4N eigenvectors which are a function of k only also display an

orthogonality property. This property is

Fit UF} = 0 for ki _= )'l i,j = 1,2,"" 6+4N (6,58)
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But even for a degenerate system one can define a set of orthogonal eigen-

vectors. Thus_ it will always be assumed that the eigenvectors form a mutually

orthogonal set_ i.e.,

FitUF]=O ,i_j i,j=l_,2, • "6+4N (6.59)

Another property may be surmised by examining the original real system of

equations. In a lossless system the property of time reversal essentially

states that if the time axis were suddenly reversed then the system would re-

trace its path of operation. That is, time reversal is expected if the system

is invariant under the following transformation,

t _ -t

%- _-_0

_o _- -Bo

(6.60)

That time reversal is expected for our plasma model is easily verified. Thus,

it is anticipated that time reversal should manifest itself in some manner in

the eigenvalues_ eigenvectors and the dispersion surface. If the Fourier

transform of a function f(_,t,B o) is g(k_,Bo )' then the Fourier transform of

the time reversed function _ f(r,-t,-B o) is _ g(k,-%0_-Bo). Therefore, for a

characteristic field the time reversed characteristic field is as follows,

i
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TABLE II

-o-

Ei (k,Xi, B o)

Hi (k, Xi, Be)

Vni(k,X,, Bo)

Uni(k,_, i, B o)

-),i

E i (k, Xi,-B o)

-H i (k, Xi,-B o)

-Vni( k , _,i ,-Be )

Uni(k, Xi,-B O)

Characteristic Field Time Reversed Characteristic Fi_,i_!

it i._ easily verified that if the characteristic field satisfies the eJi.,;cnv,_1,_,.

_',l,_l Ion, the time reversed dharacteristJc field does also. Ilence_ if the

t'h:_racleri._;ti( ' fields are known :for all. i ,quch that -jk i > 9, the_ the oih¢','

half is known by the property of time reversal. With respect to the di._per._i(;:,

surface, time reversal implies that if point (k,c0) is on the dispersJ_,n :;ll,'I _,

ihon (_'_-¢_) iS also, Time reversal iop_;etber with _he ].¢,n1 valL_e¢l pr¢_p¢'rl'/

impl i_,:; thaL it' I_oint (k,u)) ts on the disl)er,_.':io_ :_urCace t.hon I,Oi_lL (- ,w) is

_.l_t,. 'fhct'elore_ the tl_rce-spt)c(_ dispersion surl'ace at a given 0._ has 1.h(#

symmetry oi; reflection through the origin. In addition, time reversal and the

-_ -dp

real valued property implies that if any one point of the set (k,_0), (k,-w),

(-k,c0) and (-k,-_) is on the dispersion surface then all points are.

.th
Since the group velocity of the z characteristic wave is

V_i"

(6.61)
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1 h(,n the group velocity of the time reversed characteristic wave is

V_"exf-j_

Vgitr _---_ (-X i - j (.d)

= -Vcj i

(6.62)

lhert, l'()re, if a characteristic wave at (_,w) satisfies the radiation c(_nditl(m;.

"4P

theL_ the time reversed characteristic wave at (k,-¢o) does not. And (-k,-_0)

will satisfy the radiation condition but (-k,_0) will not. Thus, when the exact

total field is sought, the sum (integral) of characteristic waves must be

taken in such a manner that points (_,_0) and (-k,-_0), which satisfy the radia

-I_ -IP

tion condition, are included and points (k,-¢0) and (-k_0) are excluded 1his

laay mean that the contour of integration must be chosen appropriately.

6 6 Case of a Compressible Plasma with N = 1 Species of Charged Parti_:l,=_

(lO-Vector Method)

th
For the case of a mobile electron with an isotropic pressure, the 10

order determinantal equation reduces to

-k_ o -jkx

jkx -X/.L o

- Pq 0

0 0

Pq 0 -Pq BoX - X.Pm YPo jk

0 0 7'Po jk "T -XY'P o

-0

(6.63)

After considerable algebraic manipulations it is found that the equation becomes

I



(7po)(PmP.oEo)3 I0+ (2+8)y2+3(j.)_l+O.)2),8+ 1+28)y4+(4._)(jjNy

2 2 4_ X6 + _y6 2y2_2+ 20.)Hya + _ OJ_t_ 2 + (J.)H(.AJN + 3 (.4JN +2_OJ H
J L.

+ 1+2_)(..=J +(,02 y4 + (2+ _)(._I+(JL)H(J-')N Y +QJHQ-'}N{_ +(J.)N

r2 2=22 _X21= 0+IQJH(J.}N_ Y +_(JJH2_2y 4

where (J.)N = mEo ,(-dH = Pq Bo m ,8=7Po m c

and y = ck = (._,')'7,_).

The eigenvectors corresponding to the nonzero eigenvalues are

-. S-;_TE =Pm (XPq)-I (X2 +XOJH x* )V

H = jPq C (k(JJ_)-lTx (X*(._H X)V

V=V

u : j(Xc)-I-_'Tv
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(6.64)

(6.65)

(6.66)

(6.67)

(6.68)
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or explicitly

[ ]Ex (Pm/>,Pq) (>.2: +8_2)vx+ (-x_H + 8_q)vy + _v,

2[ ]H z = (iPqC/X(-dN) (_f.,OH-77)L)V x + ( .')?(._H+_),)Vy

V x =

Vy =

V Z =

o ] }
X2 -(_')H (.I (_)77_" -(.,O H+ - ,, ,_ + _Nj X

+(I-8_'(y 2 (.D_)_,-00 H (y2-1'72)ly +O.)N}-(I-($

J

H TI + • ,

U = j(Xc)-I[_'Vx+"r"/Vy+ _Vz]
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(6.69)

(6°70)

(6.71)

(6.72)

(6.73)

(16.74)

(6.75)

(_. 76)

(6.77)

(6.7_,)
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The remaining two eigenvectors corresponding to the eigenvalues which are

identically zero are

(6.79)

and

(6.8o)

The actual process of computing the "patterns" at a given frequency _ and

distance r is not difficult. Only simple algebraic and differentiation opera-

tions are involved. However, even for this simplest warm plasma model either

a computer or fortitude must be used because of the complexity of the alge-

braic quantities. The following is a brief outline of the steps involved :in

computing the "pattern."

(1) Determination of the dispersion surface From the determinantal

.

Equation (6.64) it is seen that the dispersion surface in k-space is a surface

of revolution and has at most three real sheets. Therefore, the dispersion

-1
surface may be found by obtaining the six roots of y with 0 = cos (_/y) as

a parameter ranging from zero to 2W.

(2) Determination of stationary points for a given r. The stationary

points are those points in which the plane tangent to the dispersion surface

is perpendicular to r. This is equivalent to points on the dispersion surface

_^ d [k(0)such that V_ (k.r) = 0, which reduces to _-_ cos (O - a = 0, (a is

A A

the angle between z and r) since the surface is a surface of revolution. Hence_

A A

the stationary points lie in the plane determined by r and z. The stationary
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points that satisfy the radiation condition must also satisfy the condition

_A

k.r _ 0. The stationary points may be found either by use of a computer or

graphically.

(3) Determination of the G_ssianradius of curvature. The Gaussian

curvature _ is defined as the product of the two principal curvatures

P1 and P2" Since _ is a surface of revolution _1 (meridian curvature) and P2

(parallel curvature) are given by

Pl = (k2+2klZ-k k#)(kZ+ k 12)-5F_ (6.8l)

,0 2 =k -I sin (2 csc 9 (6.82)

where the prime denotes the derivative with respect to e. Point k on _, is a

stationary point ; hence_

k-_ kEcos ((2- 8 ) ( k_)-= - sin ((2- 8) = ( + k12) -112 (6.83)

From Equation (6.83), one finds

d(2 = (k 2 + 2k 12 _kkll)(:k2 + k12) -I
d8

and

Pl k-I d(2- cos _(2-8) d---g"

Then it immediately follows that

7_,= k-I ko I d(I
_"
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(6.84)

(6.85)

(6.86)
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where

<_ : l, sin ;)csc 0_ sec (0t-8) (6.87)

(4) Normalization of the eigenvectors. The normalization process

Re[EXH _+ 7PouV*] = I (6.88)

as a general function is a rather formidable task, however, is simple pointwise

on a computer.

Needless to say, the remainder of the pattern calculations are rather

trivlal.

6.7 Case of a Cold Plasma wJ th N = [

Although the cold plasma is a particular case of the previous warm plasma

and _ay be found accordingly, drastic simplifications make it quite feasible

to find the radiation "patterns" without the use of a high-speed computer.

First the determinantal equation becomes quadratic in k 2 and the usual Appleton-

Hartree equation results. The dispersion surface then can be found by a

22
graphical method of Deschamps and Weeks. Also both the stationary points

a,_d the radii of car_ature can be found graphically. Furthermore, the polari-

zation ellipse of H. has one axis in the plane (k,H o) and the other perpendicu-1

lar to it. 23'24 if the axial ratio is tan _, the angle _ is simply related to

2 2

0 and to the usual ionospheric parameters X = _N/_ and Y = _H/_ by

2 I
t,_n 2/_ = 2 ccs 8 csc 8 (I--X)Y- (6.89)
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The two solutions give the polarization ratios to the "ordinary" and "extra-

ordinary" waves. For the usual definition of the "ordinary" wave (the sheet

of the dispersion surface for which k = k when k.H = 0) the major
0 ()

axis of the H-ellipse is perpendicular to the plane (k,IIo). '£he major axis

-dP
t' • ,,

of the H-ellipse for the extraordinary wave lies in the plane (k,Ho). The

normalization requires that

IH,iz=(k/WFo)cos¢a-e) (6.90)

The vector E follows form Maxwell's equations
1

E I = - (I/W) _ I_xHi (6.91)

The above brief description along with Equation (6.31) should prove sufficient

to find the radiation field of an arbitrary antenna in a cold plasma.

The principal advantages of this method of obtaining the radiation fields

of an arbitrary antenna, over that of previous authors arc:

(1) A high-speed computer is not necessary.

(2) Functions of an indeterminant form at the principal directions such

as in Bunkin's and Keuhl's solutions are not involved.

(3) All terms of the solution and t:e normalJzation are easy to

interpret physically.

It would be interesting to display the dispersive property of the medium by

showing a diagram of the four-space (k,-jk) dispersion surface, however, such

is not possible. Fortunately since the k-space dispersion surface is a surface

of revolution, the dispersive property of the medium may be illustrated by a
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diagram of (kp,kz, -jk). Figures (6.2), (6.3), (6°4) and (6.5) show the

sheets of one quadrant of such a surface in which coH/_N = 2. The sheets of

the dispersion surface in the other quadrants are mirror images in the quad-

rant planes. Since there are nine eigenvalues, the remaining sheet is -jk = O.

With the dispersion surface represented in this manner, there are only two

topologically different dispersion surfaces, WH/_N _ io Notice also that the

sheets touch only at -jk = 0, _ coN" Because of the complexity of sheet _k2

in Figure (6.3), perhaps a verbal description is in order. There are four

values of -jk that correspond to important points on the sheet. The sheet

- 0_ which is called cutoff.
intersects the -iX axis at -jk - 2 H

At -jk = coN' _k 2 intersects the light cone with the portion of the surface for

-jk < _N "inside" and for -jk > coN "outside" the light cone. -jk = _H is an

asymptote for the intersection of _k with the (kz, -iX) plane. And
2

-iX = (co + is an asymptote for the intersection of _X.. with the (k , --i\)

plane. In the neighborhood of -jk = coN' _k changes most rapidly. There Js
2

a "plateau" at -jk = ¢0N which is widest in the kz direction and disappears in

the k direction.
P

The intersection of planes -jk = co with the dispersion surface is what is

called a CMA diagram (Clemmow, Mulally, Allis). They are represented by the

dotted lines in the figures. The intersection of a plane passing through the

25
-jk axis with the dispersion surface yields a Stringer diagram, which is

represented by an alternate dot-dash line. The curves corresponding to either

side of the removed sector is a Stringer diagram.

One of the advantages of the dispersion surface represented in this manner

is that it is emphasized that there are more than one "ordinary" and "extra-

ordinary" sheets. Sheets _k and _k correspond to the "ordinary" sheets
1 3

I
I

I

I
I

I
I

I
I

I
I

I
I

I
I
I

I

I



I

I

I

I

I

I

I

I

I

I

I

I

l

I

I

-j ),: (_

Figure 6.2. One quadrant of sheet of the dispersion

surface for a magneto-ionic medium. (¢0H = 2_ N)
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Figure 6.3. One quadrant of sheet _k 2 of the dispersion surface

for a magneto-ionic medium. (_H = 2_N)
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Figure 6.4
One quadrant, of sheet _k3

for a magneto-ionic medium.
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One quadrant of sheet _k4 of the dispersion surface

for a magneto-ionic medium. (_H = 2_N)

140

I

I
I
I

I

I
I
I

I
I

I
I

I
I
I

I
I

I



I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

141

11 . |1

while _ and _ correspond to the extraordinary sheets. Also sheets
k 2 k 4

kl _d E k4 are of left hand polarization while _k3 is of right hand polari-

zation. Furthermore, the portion of _k2 "inside" the light cone (-jk < _N )

corresponds to right hand poluization while the portion "outside" (-jk > _N )

corresponds to left hand polarization.

Briefly, let us consider the major differences in the dis_rsion surfaces

of the warm _d cold plasm_ with one mobile ch_ged particle s_cies. First

the warm plasma system matrix can be expressed as a bordered cold plasma system

matrix. Hence, the ten warm plasma eigenvalues will alternate with the nine

cold pl_ma eigenvalues. Likewise the sheets of the warm pl_ma dispersion

surface will alternate with the sheets of the cold pl_ma dis_rsion surface.

The sheets of the warm pl_ma dis_rsion surf_e do not touch at -jk = _N but

may touch elsewhere. And the wam pl_ma sheet corresponding to Z k is not

limited to values of -jk between _ + 4_) - and (_H + 4 )_ but

extends to infinity in the -jk direction. That is, _n this sheet for large

k, -jk becomes large.

I
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7. CONCLUSIONS

A phenomenological approach has been used to investigate some properties

of linear passive media, Properties of fields that can propagate in linear

passive media were postulated and from this properties of the media throu_l,

the Four;er ;_-cansform of the constitutive matrix were deduced. The concept (_i

._ I)O::iCJve real condition on tile constitutive relationship for linear pass ivp

n]odiia WaS iI_tro(hlced and some of its implications were considered. Also, tbc

concept of causal ityjwbich is more fundamental than the group velocity co1,(.c.l,l

and which is necessary for _'oaliznble media)was considered, '_),_l'[](:__._'},' _,,_

tlm caqe of' Jsotil'ot):ic ;aod_a.

A p_.elleral ['or,zlulal;ioll of Lbe _;i)ectrum of charpct;orJ,qt;ic, wav(,,q I1 I(),_:;' ,

linear pas_qive _lledia has been made. Tile fields title Co alk nr'.)ii;raF;' ,_{()lIl'(!(_ ("._1_

be separated into components parallel to the cl_aracteristic waves by using _,i_

orLhogonality condition for the characteristic waves of the medium. The corn

po1_ents of the source t'Jeld are dependent only upon the portion of the source

parallel, to t'.,cir characteristic field and to their own sheet(s) o[" the dis

pc_'_on surface. The theory has been app].ied to the problems of longitudinal

and transverse electric dipoles in a general time-dispersive uniaxJal medim_,

and to an electric dipole in an isotropic compressible plasma with N specJes

of charged particles to obtain exact solutions.

Finally_the ra(liai_on I'ield of an arbitrary source in a lossless linear

passive medium has been obtained by using the spectral decomposition of the

fields and the stationary phase method. It is shown that by normalizing the

length of the Total Poynting vector (electromagnetic plus medium) to unity

for each characteristic field, a concise and physically interpretable
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expression for the source fields is obtained. The radiation field for a time

harmonic source was found to depend upon the Gaussian radius of curvature, the

reaction of the source with the normalized characteristic field, and the char-

acteristic field at each stationary point on the dispersion surface. These

results have then been applied to an anisotropic compressible plasma and to a

magneto-ionic plasma.
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